Assignments Questions on Unit 4 and Unit 5 (Date :29/05/2024)

Unit 4 Assignment -1

2

Problem 17.25 A jet of water having a velocity of 35 m/s impinges on a series of vanes moving with a velocity of 20 m/s. The jet makes an angle of 30° to the direction of motion of vanes when entering and leaves at an angle of 120°. Draw the triangles of velocities at inlet and outlet and find:

- (a) the angles of vanes tips so that water enters and leaves without shock,
- (b) the work done per unit weight of water entering the vanes, and
- (c) the efficiency.

Problem 17.26 A jet of water having a velocity of 30 m/s strikes a series of radial curved vanes mounted on a wheel which is rotating at 200 r.p.m. The jet makes an angle of 20° with the tangent to the wheel at inlet and leaves the wheel with a velocity of 5 m/s at an angle of 130° to the tangent to the wheel at outlet. Water is flowing from outward in a radial direction. The outer and inner radii of the wheel are 0.5 m and 0.25 m respectively. Determine:

- (i) Vane angles at inlet and outlet,
- (ii) Work done per unit weight of water, and
- (iii) Efficiency of the wheel.

Unit 4 Assignment -2

Problem 18.1 A Pelton wheel has a mean bucket speed of 10 metres per second with a jet of water flowing at the rate of 700 litres/s under a head of 30 metres. The buckets deflect the jet through an angle of 160°. Calculate the power given by water to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.98.

Problem 18.3 The penstock supplies water from a reservoir to the Pelton wheel with a gross head of 500 m. One third of the gross head is lost in friction in the penstock. The rate of flow of water through the nozzle fitted at the end of the penstock is $2.0 \, \text{m}^3/\text{s}$. The angle of deflection of the jet is 165° . Determine the power given by the water to the runner and also hydraulic efficiency of the Pelton wheel. Take speed ratio = 0.45 and $C_v = 1.0$.

Unit 4 Assignment -3

Problem 18.11 A Pelton wheel is to be designed for a head of 60 m when running at 200 r.p.m. The Pelton wheel develops 95.6475 kW shaft power. The velocity of the buckets = 0.45 times the velocity of the jet, overall efficiency = 0.85 and co-efficient of the velocity is equal to 0.98.

Problem 18.13 The three-jet Pelton turbine is required to generate 10,000 kW under a net head of 400 m. The blade angle at outlet is 15° and the reduction in the relative velocity while passing over the blade is 5%. If the overall efficiency of the wheel is 80%, $C_v = 0.98$ and speed ratio = 0.46, then find: (i) the diameter of the jet, (ii) total flow in m^3 /s and (iii) the force exerted by a jet on the buckets.

If the jet ratio is not to be less than 10, find the speed of the wheel for a frequency of 50 hertz/sec and the corresponding wheel diameter.

Unit 4 Assignment -4

Problem 18.14 An inward flow reaction turbine has external and internal diameters as 1 m and 0.5 m respectively. The velocity of flow through the runner is constant and is equal to 1.5 m/s. Determine:

- (i) Discharge through the runner, and
- (ii) Width of the turbine at outlet if the width of the turbine at inlet = 200 mm.

Problem 18.16 A reaction turbine works at 450 r.p.m. under a head of 120 metres. Its diameter at inlet is 120 cm and the flow area is 0.4 m^2 . The angles made by absolute and relative velocities at inlet are 20° and 60° respectively with the tangential velocity. Determine:

- (a) The volume flow rate, (b) The power developed, and
- (c) Hydraulic efficiency.

Assume whirl at outlet to be zero.

Unit 4 Assignment -5

Problem 18.23 A Francis turbine with an overall efficiency of 75% is required to produce 148.25 kW power. It is working under a head of 7.62 m. The peripheral velocity = $0.26 \sqrt{2gH}$ and the radial velocity of flow at inlet is $0.96\sqrt{2gH}$. The wheel runs at 150 r.p.m. and the hydraulic losses in the turbine are 22% of the available energy. Assuming radial discharge, determine:

- (i) The guide blade angle,
- (ii) The wheel vane angle at inlet,
- (iii) Diameter of the wheel at inlet, and
- (iv) Width of the wheel at inlet.

Problem 18.34 A conical draft-tube having diameter at the top as 2.0 m and pressure head at 7 m of water (vacuum), discharges water at the outlet with a velocity of 1.2 m/s at the rate of 25 m^3 /s. If atmospheric pressure head is 10.3 m of water and losses between the inlet and outlet of the draft-tubes are negligible, find the length of draft-tube immersed in water. Total length of tube is 5 m.

Problem 18.41 (A) A turbine develops 9000 kW when running at 10 r.p.m. The head on the turbine is 30 m. If the head on the turbine is reduced to 18 m, determine the speed and power developed by the turbine.

Unit 5 Assignment -1

Problem 19.1 The internal and external diameters of the impeller of a centrifugal pump are 200 mm and 400 mm respectively. The pump is running at 1200 r.p.m. The vane angles of the impeller at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impeller per unit weight of water.

Problem 19.2 A centrifugal pump is to discharge 0.118 m³/s at a speed of 1450 r.p.m. against a head of 25 m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.

Unit 5 Assignment -2

Problem 19.13 The diameters of an impeller of a centrifugal pump at inlet and outlet are 30 cm and 60 cm respectively. Determine the minimum starting speed of the pump if it works against a head of 30 m.

Problem 19.15 A centrifugal pump with 1.2 m diameter runs at 200 r.p.m. and pumps 1880 litres/s, the average lift being 6 m. The angle which the vanes make at exit with the tangent to the impeller is 26° and the radial velocity of flow is 2.5 m/s. Determine the manometric efficiency and the least speed to start pumping against a head of 6 m, the inner diameter of the impeller being 0.6 m.

Unit 5 Assignment -3

Problem 19.16 A three stage centrifugal pump has impellers 40 cm in diameter and 2 cm wide at outlet. The vanes are curved back at the outlet at 45° and reduce the circumferential area by 10%. The manometric efficiency is 90% and the overall efficiency is 80%. Determine the head generated by the pump when running at 1000 r.p.m. delivering 50 litres per second. What should be the shaft horse power?

Problem 19.19 Find the number of pumps required to take water from a deep well under a total head of 89 m. All the pumps are identical and are running at 800 r.p.m. The specific speed of each pump is given as 25 while the rated capacity of each pump is 0.16 m³/s.

Problem 19.21 The diameter of a centrifugal pump, which is discharging 0.03 m³/s of water against a total head of 20 m is 0.40 m. The pump is running at 1500 r.p.m. Find the head, discharge and ratio of powers of a geometrically similar pump of diameter 0.25 m when it is running at 3000 r.p.m.

Unit 5 Assignment -4

Problem 20.1 A single-acting reciprocating pump, running at 50 r.p.m., delivers 0.01 m^3/s of water. The diameter of the piston is 200 mm and stroke length 400 mm. Determine:

(i) The theoretical discharge of the pump, (ii) Co-efficient of discharge, and (iii) Slip and the percentage slip of the pump.

Problem 20.3 The cylinder bore diameter of a single-acting reciprocating pump is 150 mm and its stroke is 300 mm. The pump runs at 50 r.p.m. and lifts water through a height of 25 m. The delivery pipe is 22 m long and 100 mm in diameter. Find the theoretical discharge and the theoretical power required to run the pump. If the actual discharge is 4.2 litres/s, find the percentage slip. Also determine the acceleration head at the beginning and middle of the delivery stroke.

Unit 5 Assignment -5

Problem 20.11 The diameter and stroke length of a single-acting reciprocating pump are 12 cm and 20 cm respectively. The lengths of suction and delivery pipes are 8 m and 25 m respectively and their diameters are 7.5 cm. If the pump is running at 40 r.p.m. and suction and delivery heads are 4 m and 14 m respectively, find the pressure head in the cylinder:

- (i) at the beginning of the suction and delivery stroke,
- (ii) in the middle of suction and delivery stroke, and
- (iii) at the end of the suction and delivery stroke.

Take atmospheric pressure head = 10.30 metres of water and f = .009 for both pipes.