Boundary layer theory



Boundary layer theory

« When a real fluid flows past a solid body or a solid - BOUNDARY
LAYER

wall, the fluid particles adhere to the boundary and

condition of no slip occurs.

* This means that the velocity of fluid close to the
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boundary will be same as that of the boundary. SOLID BODY

* If the boundary is stationary, the velocity of fluid

at the boundary will be zero.

* Farther away from the boundary, the velocity will be higher and as a result of this variation

of velocity, the velocity gradient & will exist.



Boundary layer theory

Away from the boundary the velocity increases gradually
and reaches free stream velocity at some distance from
the boundary and here there is a small region close to
the boundary where velocity gradient exist and this

region is known as Boundary layer region.

In the boundary layer region the flow is highly
viscous and hence Bernoulli’s equation is not valid or

not applicable in boundary layer region



Boundary layer theory

* Due to boundary of small region is known as BLR the velocity decreases due to

boundary and there are losses.

« Due to boundary layer formations losses are arises but in the rivers, large diameter pipes

....etc we neglect but in small diameters boundary layer causes losses in properties like

VISCOSIty.
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TURBULENT BOUNDARY
LAYER
LAMINAR BOUNDARY
LAYER G
F
LAMINAR
/SUBLAYER
— . D
LEADING 1 \
EDGE LAMINAR TURBULENT
ZONE ZONE
TRANSITION
ZONE

Fig.13.2 Flow over a plate.
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Boundary layer theory

Growth of boundary layer over a flat plate:

* When ever a real fluid flows pass a flat plate the velocity

of fluid on the plate will be same as that of plate velocity.

* If the plate at rest ,the fluid will also have zero velocity

and BLR will grow distance from the leading edge

* Up to certain distance BLR is laminar as the distance
from the leading edge increases the laminar BLR grows

in instability and flow changes from laminar to turbulent
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Boundary layer theory

Growth of boundary layer over a flat plate:
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It is found the even turbulent region close to the plate the flow is laminar and the

region is known as laminar sub layer. Laminar sub layer exist in turbulent boundary

layer region.



Boundary layer theory
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Boundary layer theory

Boundary layer thickness(0) :

It is the vertical distance friom the boundary till the
point where the velocity becomes 99 % of the free

stream velocity

At Aty=0 ;U =0.99U,

But for the numerical we assume Aty=0 ;U =U_,



Boundary layer theory

Displacement thickness (67):

It is defined as the distance by which the solid boundary
must be shifted in case of ideal fluid to compensate for

the loss in mass flow rate due to boundary layer region




Boundary layer theory

Momentum thickness :

It is defined as the distance by which the sloid body
must be shifted in case of ideal fluid to compensate
for the loss in momentum due to boundary layer

region

S U U
6= f() a(l_a) dy




Boundary layer theory

Energy thickness 6 :

It is defined by the distance by which the distance
by which the solid boundary must be shifted in case

of ideal fluid to compensate for the loss in energy

due to boundary layer region.

8 = [y 7= (1= G2 dy




Problem 13.1 Find the displacement thickness, the momentum thickness and energy thickness for

the velocity distribution in the boundary layer given by % = % where u is the velocity at a distance y

from the plate and u = U at y = &, where & = boundary layer thickness. Also calculate the value of 5%/0.

Solution. Given :

Velocity distribution *r=2
U d

(i) Displacement thickness 6* is given by equation (13.2),
0 U Y .[:: d Y U o

§
2
= |:;,; - y_} {8 is constant across a section }



(if) Momentum thickness, 8 is given by equation (13.5),

d
0= i[l—i}iy

Substituting the value of %,

U
U




(iii) Energy thickness 8** is given by equation (13.6), as
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Problem 13.2 Find the displacement thickness, the momentum thickness and energy thickness for

2
the velocity distribution in the boundary layer given by §= 2 [%J — [%J :

Solution. Given :

2
: e U y y
Velocity distribution — =2 ==
’ U (a] [a]

(i) Displacement thickness 0* is given by equation (13.2),
b u
5* = j -2 4
0 ( UJ d

2
Substituting the value of % = 2(2) — (EJ , we have
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(if) Momentum thickness 8, is given by equation (13.5),
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(#if) Energy thickness 8** is given by equation (13.6),

-5 _2:; yz ~ 8:.13 N I2y4 ~ ﬁ}fﬁ yﬁ]d
hls & & & & &

_|i2}r2 ) J’3 ) 8;-;4 N 12},5 -ﬁ}rﬁ N y‘.’ }
128 38 48 58 680 78°
& & 28* 128° &% &7 ) 12

_ _ — — 8 —— -84+ —58 -
5 357 5 T ss 5 Tar 0 3 20t30-0+
) & 2106-358+2528+15d

12
=-20-—+—0+—=
3 5 7 105

245842678 228
N 105 T 105

8

L
=

Ans.




Boundary layer separation:

* When the real fluid flows in converging passage the

velocity increases and the pressure decrease and

_&-:-—l

hence fluid flows under negative pressure gradient

S

this flow is also known as accelerating flow. -
sepmication starts

* Hence boundary layer thickness decreases there
fore negative pressure gradients are known as

favourable pressure gradient
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Boundary layer separation due to positive pressure gradient

 |If the angle at the divergence is large the retardation of fluid particles is more and at the
same point the moment of the fluid particles may not support the flow and flow might be
separate from its boundary and reverse in flow deviation is known as boundary layer

separation.



Methods to control boundary layer separation:

1.

2.

3.

4.

accelerating the fluid in the diverging region .
Streamlining the body
Sucking the fluid in the boundary layer region

Keeping the divergence angle to a minimum






Moment equation for boundary layer by Von Karman

(Explanation only )

« Consider the flow of a fluid having free

stream velocity equal to U ,over a thin plate. —

 the drag force on the plate can be determined —

If the velocity profile near the plate is known

|<—x—>

BOUNDARY LAYER

Consider a small length Ax opf the plate at a distance of x from the lading

edge the enlarged view of the small length of the plate

OUTER EDGE OF
BOUNDARY LAYER




The shear stress near the plate Ty = u(@)

dy y:()

Where (@) IS the velocity distribution near the plate aty =0
dy y=0

AFp= drag force on distance Ax

AF,= drag force = the rate of change of momentum over the
distance Ax

Let ABCD is the control volume of the
fluid over the distance Ax
Edge DC = Outer edge of the boundary layer

u= velocity at any within the boundary layer

b= width of the plate

OUTER EDGE OF
BOUNDARY LAYER




: : OUTER EDGE OF
Then mass rate of flow entering through the side AD BOUNDARY LAYER

3

=), p X velocity X area of strip of thickness dy

*d

= pXuxbxdy {- Area of strip = b X
0

0
= . pubdy

Mass rate of flow leaving the side BC

= mass through AD +ai (mass through AD) x Ax
x

5 9 [ ¢
- L pubdy EU (pubdy)] X Ax

0



From continuity equation for a steady incompressible fluid flow, we have
Mass rate of flow entering AD + mass rate of flow entering DC
= mass rate of flow leaving BC

Mass rate of flow entering DC = mass rate of flow through BC — mass rate of flow through AD

5 d | (3 3 OUTER EDGE OF
= I pubdy + ™ L pubdy | x Ax - j pubdy BOUNDARY LAYER
0 X 0

J B
== [L pubdy] X Ax

The fluid is entering through side DC with a uniform velocity U.
Now let us calculate momentum flux through control volume.
Momentum flux entering through AD

3

= .[ momentum flux through strip of thickness dy
0
d _ _ ) d 9

= J mass through strip X velocity = J. (pubdy) X u = J pu~bdy
0 0 0

3 o
Momentum flux leaving the side BC = J puzbdy + ai U puzbdy} X Ax
0 X ]



8 o | o
_ , _ ) d 2 OUTER EDGE OF
Momentum flux leaving the side BC L pu-bdy + I [‘L pu f’d}’} X Ax BOUNDARY LAYER

Momentum flux entering the side DC = mass rate through DC X velocity

I | 1% ubdy | x Axx U
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d | (8
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As U is constant and so it can be taken inside the differential and integral.
Rate of change of momentum of the control volume
= Momentum flux through BC — Momentum flux through AD
— momentum flux through DC

5 ) o [ ¢d 5 3 5 J ]
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{ For incompressible fluid p is constant}
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Now the rate of change of momentum on the control volume ABCD must be equal to the total force
on the control volume in the same direction according to the momentum principle. But for a flat plate

ox

side DC is negligible as the velocity is constant and velocity gradient is zero approximately. The only
external force acting on the control volume is the shear force acting on the side AB in the direction

from B to A as shown in Fig. 13.4 (b). The value of this force is given by equation (13.7) as

d
P = (), which means there is no external pressure force on the control volume. Also the force on the

AF, =Ty X Ax X b

Total external force in the direction of rate of change of momentum
=-TygXAx X b

Ja (uz —uU)dy] X Ax

—Tux&xxb=pbi[
0

ox



or

or

Cancelling Ax X b, to both sides, we have

— Ty = pa% U: (u? - uU)dy}
T, = pim (u? - uU)dy]= D a%“: (U - uz)dy}

pU2 dox Von Karman momentum integral equation




Von Karman momentum integral equation applicable for :

This is applied to :

1. Laminar boundary layers,

2. Transition boundary layers, and

3. Turbulent boundary layer flows. oU> =




AF =Ty X Ax X b
Then total drag on the plate of length L on one side is
L
Fp= [ AFp= [ 1yxbxdx {change Ax = dx}.

Local Co-efficient of Drag [Cp*]. It is defined as the ratio of the shear stress T, to the

quantity % pU?. It is denoted by Cp*
where A = Area of the surface (or plate)

Hence Cp* = 20 U = Free-stream velocity

1 Uz'
2" 0 = Mass density of fluid.

Average Co-efficient of Drag [Cp]. It is defined as the ratio of the total drag force to
the quantity % pAU?. Tt is also called co-efficient of drag and is denoted by C D

Fp

Hence Cp= 7
EpAU2




Boundary Conditions for the Velocity Profiles. The followings are the boundary
conditions which must be satisfied by any velocity profile, whether it is in laminar boundary layer

zone, or in turbulent boundary layer zone :

d
1. Aty=0,u=0and d—u has some finite value
y

2. Aty=90%,u=U

3. Aty=ﬁ,ﬁ=0.
dy



Problem 13.3 For the velocity profile for laminar boundary layer flows given as
u

= _ -
% (y/3) — (y/3)

find an expression for boundary layer thickness (3), shear stress (1,) and co-efficient of drag (Cp) in
terms of Reynold number.
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The shear stress at the boundary in laminar flow is also given by Newton’s law of viscosity as

W=H [d—ﬂ] (i)
dy y0
: : -E}r }rz
But from equation (i), u=1U S - 52
d_j =U _% - ;_ﬂ {-» U is constant}
du _U'E_Ex[ﬂ}_w
dy ) _ o 5 o
¥=0 -




Equating the two values of T, given by equation (13.15) and (iii)

2 1_ _IIJ,U
15 pU” [ ] O
Iiuu lu _15p
or [E] r=su 63[5]——pU ox

As the boundary layer th]l’.‘k[ll:Sb l[ﬁ] 1s a function of x only.
Hence partial derivative can be changed to total derivative



On integration, we get

15u

Bd[B] = oU dx
2
5 = 151 x+ C Lisu.:{:rn's.tanl
2 pU pU
x=0,8=0and hence C=10
8 15p.r
— =
5= Jz}“ﬁ‘“‘ PD’” - 548 B (13.16)
pU pU
_sag [PXX _sag | X - R =PUX
pU X x R, oo
= 548 — (13.17)

VR,



(if) Shear stress (Ty) in terms of Reynolds number
2ut
)

Substituting the value of & from equation (13.17), in the above equation, we get

From equation (#i7), we have T, =

T'[I' = =
5.48 X 5.48x X

VR,

2ul EHUJE=[J'+365 EJ‘R_

(iii) Co-efficient of Drag (Cp)

Fp
1 2
—pAU
2

From equation (13.14), we have Cp =

where Fp, is given by equation (13.12) as

Fp= j:t,j X b xdx= J:(J.Sﬁﬁ%ﬁxb X dx

_{}Sﬁﬁj ry 'pUx X b X dx { R, =M}
' =
-{}365qu f—x—xﬁ:xdx




L 12 L
=0.365 pU /E X s.-.-j x 12 dx = 0365 uU "’” X b TT]
1l ¥ LL =
2

0

=0365 x 20U _|PY b x VI
1

pUL
u

073 bpv |PYE
Cﬂ = l‘l

—pAU
ZP

=0.73 buU .(13.18)

where A = Area of plate = Length of plate x width=L X b
Cp= 0.73 buU pUL 146 p [pUL
%mxwui'ﬂ AN

1.46 L _ L Voo™ T
_ *"E=1+46 mo_ 146 1309 - L R
N PUL R, PUL VR,




Table 13.1

Velocity Distribution o Cp

i Y (%)

ooy () I 5 5.48 v/ 1.46/ R

U (8) (8) A *

u 3(y 1 (v y

—_—— === = 4.64 x/ R 1.292/ (R

U 2(8) 2(6) N =

'—‘—2(1) 2(1)3+(1)4 5.84 3/ [R, 1.36/ R

v “\8) “\8) \s (it i T

wo Ty

o =sin (5 3.) 4.79 x1 [R, 1.31/JR,,

Blasius’s Solution 491 x/ R, 1.328/ /R,
; L




» 13.4 TURBULENT BOUNDARY LAYER ON A FLAT PLATE

The thickness of the boundary layer, drag force on one side of the plate and co-efficient of drag
due to turbulent boundary layer on a smooth plate at zero pressure gradient are determined as in case
of laminar boundary layer provided the velocity profile is known. Blasius on the basis of experiments
give the following velocity profile for turbulent boundary layer

u vy
I 4 LA13.3
T (EJ (13.35)

where n = % for R, < 10" but more than 5 x 10°

" }I 147
. (EJ (13.36)

Equation (13.36) is not applicable very near the boundary, where the thin laminar sub-layer of
thickness & exists. Here velocity distribution is influenced only by viscous effects.

14
The value of T, for flat plate is taken as T, = 0.0225 p U* [pﬁLU] (13.37)




» 13.5 ANALYSIS OF TURBULENT BOUNDARY LAYER

(a) If Reynold number is more than 5 X 10° and less than 10" the thickness of boundary layer and
drag co-efficient are given as :

0.37x 0.072
— 7 and Cp= ——+
(R,)" (R, )

where  x = Distance from the leading edge

d = ..(13.44)

R, = Reynold number for length x

€y

R, = Reynold number at the end of the plate.

€

(&) If Reynold number is more than 107 but less than l[}g, Schlichting gave the empirical equation as

Cp= 0455 ..(13.444)

{lﬂgm R, )1.53




