UNIT -2

aminar flow, Turbulent flow
& Flow through Pipes



Laminar flow, Turbulent flow: Introduction-Laminar flow — Reynolds experiment; Navier- Stokes
equations of motion (Explanation only, No derivation); Relationship between Shear Stress and Pressure
Gradient; Flow of viscous fluid in circular pipes-Hagen Poiseuille Law; Flow of viscous fluid between
two parallel plates - one plate moving and other at rest ; both plates at rest ; Turbulent flow -
Introduction- Loss of head due to friction in pipe flow-Darcy equation- characteristics of turbulent

Flow.

Flow through Pipes: Introduction- Major Energy Losses- Darcy-weisbach formula; Minor Energy
Losses- Losses due to sudden enlargement, sudden contraction, loss of head at the entrance to pipe, exit
of a pipe, loss of head due to bend in pipe and various pipe fittings pipes in series; equivalent pipe;

pipes in parallel; Power Transmission through pipes.



Topic :Turbulent flow UNIT-2

Laminar flow: A laminar flow is one in which paths taken by laminar flow
the individual particles do not cross one another and move =
along well defined paths . This type of flow is also called =

;
stream-line flow or viscous flow. =
Examples. turbulent flow
(i) Flow through a capillary tube. o g

< = " . i

(ii) Flow of blood in veins and arteries. - - .

(ii1) Ground water flow.
Turbulent flow: Turbulent flow, type of fluid (gas or liquid) flow in which the fluid undergoes irregular
fluctuations, or mixing, in contrast to laminar flow, in which the fluid moves in smooth paths or layers. In
turbulent flow the speed of the fluid at a point is continuously undergoing changes in both magnitude and

direction



Topic :Turbulent flow

Reynolds Experiment :

The type of flow is determined from the Reynolds number i.e., This was

demonstrated by O. Reynold in 1883. His apparatus is shown in Figure.

The apparatus consists of:

(i) A tank containing water at constant head,

(i1) A small tank containing some dye,

(ii1) A glass tube having a bell-mouthed entrance at one end and a regulating

value at other ends.



« The water from the tank was allowed to flow through _~DYE CONTAINER

the glass tube. . =

* The velocity of flow was varied by the regulating f VALVE

valve.

« A liquid dye having same specific weight as water was

GLASS  \EILAMENT OF

Introduced into the glass tube as shown in Figure WATER

Reynold apparatus.



The following observations were made by Reynold:

- - - - D‘ili'E
(i) When the velocity of flow was low, the dye filament in the / FILAMENT
glass tube was in the form of a straight line. This straight line v ;
of dye filament was parallel to the glass tube, which was the 4y aminar flow WAVY
/ FILAMENT

case of laminar flow as shown in Figure !\Mfé-

(i) With the increase of velocity of flow, the dye- filament (b) Transition
was no longer a straight-line but it became a wavy one as F‘\ﬁ\/_(__d____g_:fzf_‘_:_zf-f

DIFFUSED
FILAMENT

- = = = = = e

shown in Figure (b). This shows that flow iIs no longer (c) Turbulent flow

laminar. Different stages of filament.



(it1) With further increase of velocity of flow, the wavy dye-
filament broke-up and finally diffused in water as shown in
Figure (c). This means that the fluid particles of the dye at this
higher velocity are moving in random fashion, which shows
the case of turbulent flow. Thus in case of turbulent flow the
mixing of dye-filament and water is intense and flow Is
irregular, random and disorderly.

In case of laminar flow, the loss of pressure head was found to
be proportional to the velocity but in case of turbulent flow,
Reynold observed that loss of head is approximately

proportional to the square of velocity.

DYE
/ FILAMENT

Y

(a) Laminar flow WAVY
/" FILAMENT

%Jamﬁfﬂxdfﬁxwxﬂﬁifu

(b) Transition

DIFFUSED
FILAMENT

(c) Turbulent flow

Different stages of filament.

More exactly the loss of head, h, o V", where n varies from 1.75 to 2.0



FLOW OF VISCOUS FLUID IN CIRCULAR PIPES-HAGEN POISEUILLE LAW

Hagen-Poiseuille theory is based on the following assumptions:
1. The fluid follows Newton's law of viscosity.
2. There is no slip of fluid particles at the boundary (i.e. the fluid particles

adjacent to the pipe will have zero velocity).

@ Pipe
| /
P l .- 2 nrdx
— . p> ‘,_,_h Zo—(p+ ;&d.
Direction ox
of flow - L_
! d\
- -ﬂ% L
- X2 >

Figure shows a horizontal circular pipe of radius R, having laminar flow of fluid through it.



FRICTIONAL LOSS IN PIPE FLOW

When a liquid is flowing through a pipe, the

velocity of the liquid layer adjacent to the pipe wall

IS zero. The velocity of liquid goes on increasing
from the wall and thus velocity gradient and hence
shear stresses are produced in the whole liquid due
to viscosity. This viscous action causes loss of

energy which is usually known as frictional loss.

On the basis of his experiments, William Froude
gave the following laws of fluid fraction for

turbulent flow.




EQUATIONS OF MOTION

According to Newton's second law of motion, the net force F, acting on a fluid element in the
direction of x Is equal to mass m of the fluid element multiplied by the acceleration a, in the
X-direction. Thus mathematically,

Fy =M a,

In the fluid flow, the following forces are present:

(1) E,, gravity force.

(11) E, the pressure force.

(i) F, force due to viscosity.

(iv) F; force due to turbulence.

(V) F., force due to compressibility.

The net force
Net Force=F, +F,+F, +F, +F,



the net force
F .= (Fg)_,_, + (FP}_,_, +(F),+ (F) + (F.),.

(i) If the force due to cnmpressihility, F.: is negligible, the resulting net force
and equation of motions are called Reynold’s equations of motion.

(if) For flow, where (F,) is negligible, the resulting equations of motion are known as
Navier-Stokes Equation.

(111) If the flow is assumed to be ideal, viscous force (F ) is zero and equation of motions are
known as Euler’s equation of motion.

Note :Navier —Stokes equation is fundamental equation for Laminar flow



Application for Naiver —Stroke Equation

1) Viscous flow through the circular pipe (Haigen —Poiseuilles Law)
2) Viscous flow between two parallel plates stationary (Plane - Poiseuilles Law)

3) Viscous flow between two parallel plates one plate is stationary (couette flow )



1.FLOW OF VISCOUS FLUID IN CIRCULAR PIPES-HAGEN POISEUILLE LAW

Hagen-Poiseuille theory is based on the following assumptions:
1. The fluid follows Newton's law of viscosity.
2. There is no slip of fluid particles at the boundary (i.e. the fluid particles

adjacent to the pipe will have zero velocity).

@ Pipe
| /
P l .- 2 nrdx
— Y «r-,—h Zo—(p+ '—.ﬂm
Direction ox
of flow - L_
! d\
- -ﬂ% L
- ¥ >

Figure shows a horizontal circular pipe of radius R, having laminar flow of fluid through it.



1.FLOW OF VISCOUS FLUID IN CIRCULAR PIPES-HAGEN POISEUILLE LAW

Assumptions :
1) Steady
2) Flow is fully developed (\elocity is not changing with respect to Length )

(Pressure i1s not changing with respect to Length )

Developing Flow dicrid ﬂ“' :

Fotrasce Loagth
(1= 30 ta 80 )

Figure 2 Development of Boundary Layer in Pipe
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Shear stress distribution : L : 4
[) . > 2t ' T
{ T.2 % rdx P R
F = Mass x acceleration X prr Gy T [I’ ' ‘b}v: o 3
F=Mxa l.)lfv:;‘tluﬂ | - - X
of | ' . .
f flow | I‘—Id.x‘ _4 |

3
2
The pressure force, p X nr? . .
t—x, He——— 1 :1
Xy

%)
The pressure force, ( p+ 8_p Ax) o
X

' Figure shows a horizontal circular pipe of radius R, havin
The shear force, T X 2rAx J PIP 9

laminar flow of fluid through it.

prr’ — [p+a—pr] T’ — T X 21r X Ax = 0

X

op r

J
—%Mrz—txZErxm=O -g-f‘-hﬁ’ dx 2




Shear stress distribution and velocity distribution

SHEAR STRESS VELOCITY
_ _ o _ _ DISTRIBUT%ON DISTRIBUTION
(i) Velocity Distribution. To obtain the velocity //
distribution across a section, the value of shear < . . ) . >
stress () e —)
du
1=p (a) (b)
d}’ Shear stress and velocity distribution across a section.
. : du . ,
But in the relation T= [ e y is measured from the pipe wall. Hence
y
y=R-r
dy = — dr
du du
T=l—=-1—



du du dp r
T = —_— = =  —— - 1
u—dr ”dr i ox 2
du  Opr
_ME_ dx 2
du 1 dp .
dr 2u ox

Integrating this above equation w.r.t. ‘r’, we get

M=La—pr2+C
4u dx

where C is the constant of integration and its value is obtained from the boundary condition that at
r=R,u=0.



where C Is the constant of integration and its value is obtained from

the boundary condition thatatr =R, u = 0.

OzLa_pR2+C C=_La_pR2
4 dx 4u ox
u=ia—p r’+ C
4 dx
— l ap 2 l ap 2 lap

—_—— - — __ Lo 2
4p ox 4j.la.r[ "

N
=

(=
-
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1 d
VelocityU= - — L [R* - r*]
4u ox

() Ratio of Maximum Velocity to Average Velocity. The velocity I1s maximum,

when r = 0 in the above equation Thus maximum velocity, Umngx IS Obtained as

y = L% p
4L ox

max




Discharge (Q)

a'Q = valﬂcu}' at a radius r X area of ring element

—u><2‘.rl:rdr

=-ia—p[R3—r2]x2nrdr
4p dx

_ R ~ ”_LB_P 2 2
Q_L dQ-L 4“ax(R %) X 21 dr

1 [aip)xzmj (R2= 1) rdr

dp
—[ax)x}mj (R r—r)dr

R

22 4
=1[—3p)x2nﬁ’r_r
4u \ ox 2 4

1
Velocity U= - m

P (g2 _ P



4p ox 4
4
= : [_ap)x2nx—~
4u \ ox 4
)
8u \ ox
R (—BP)Ra
Average velocity, u = 0 _ 8u\ ox
Area R>
1 (-dp

ol

1 dp
41 ox

=2.0

BP) 2
— |R
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(i1)Drop of pressure for a given Length (L)

u = 1 [_ap)gg [__E’P]=@
8\ dx Ox R’

Integrating the above equation w.r.t. x, we get

- | dp = l EEE—dx
-L -[2 R?

SLu
RE
Suu

= L

8L
(D/2)°

=[P P2l =

[x, —x,]

_ 32uulL

DZ

S s

(py—=py)= , where p, — p, is the drop of pressure.



Loss of pressure head =

is called Hagen Poiseuille Formula.



FLOW OF VISCOUS FLUID BETWEEN TWO PARALLEL PLATES

In this case also, the shear stress distribution, the velocity distribution across a section; the ratio of maximum velocity to

average velocity and difference of pressure head for a given length of parallel plates, are to be calculated.

‘Y PARALLEL PLATE
DIRECTION P A Yy
OF FLOW
| EE—. ( + AY)AX x1
1. The pressure force, p X Ay X 1 on face AB. | ?i_ yD t
pxAyx1 ///

J +—9A Ay x1
2. The pressure force, ( p+ a—p ﬁx) Ay x 1 on face CD y 1C (P X)Ay X
X W
X

,\ , le—>] PARALLEL PLATE
3. The shear force, T X Ax X 1 on face BC. AX
| Viscous flow between two parallel plates.

4. The shear force, (1: +? ﬂy} Ax X 1 on face AD.
y



For steady and uniform flow, there is no acceleration and hence

the resultant force in the direction of flow is zero.

5 by PARALLEL PLATE
p MMMM
pAy x 1 —(p+gﬁx) Ay x 1 DIRECTION %44 -
OF FLOW .
It R (t +a—y Ay)Ax x1
- TAx X 1 + 1:+a—Ay Axx1=0 i é» A t
y y P e 3
op ot y e I o
—a—,ﬁxﬁy+a—,&y&x=0 +
x X A ] PARALLEL PLATE
A X
. dp _ JT _
Dividing by AxAy, we get - F F 0 | Viscous flow between two parallel plates.
dp 01T




dp Ot

dx dy
(1) \elocity Distribution. To obtain the velocity du
distribution across a section, the value of shear stress = T=U0—

dy

from Newton's law of viscosity for laminar flow is substituted in equation

ap d( du 9%u
ox oy\ dy)THT
o'u _1dp
dy2 L dx




Pu_1ap

dy* | ox
_ _ Ju 1 dp
Integrating the above equation w.r.t. y, we get _y = H o y+C,
2
[ntegrating again u= la_py_ +Ciy+ G,
uox 2

where C1 and C2 are constants of integration. Their values are obtained from the two boundary

conditions thatis (i)aty =0, u=0 (i) aty=t,u=0

y = 0,u=01in equatign (9.8) giveg y=1I,u= 0 in equati(}n (98) giVES
0=la—pt—+Clxt+U
W ox 2
19p t° 1 op

- —1

Wox 2Xr 2 ox

1 =



1 dp yE
U= +Cv+ C
" ox 1y 2
_ldp o, [ 10p
Ton y[ Zpaxrj
__ Lo
U= 2 o [ty — y]

L

- Ty W
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— (a)

U

max

(b)

i
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Velocity distribution and shear stress distribution
across a section of parallel plates.



(i) Ratio of Maximum Velocity to Average Velocity. The velocity is maximum, when y = /2.
Substituting this value in equation (9.9), we get




Discharge (Q)

The average velocity, u, is obtained by dividing the discharge (Q) across the section by the area of the section

(t x 1). And the discharge Q is obtained by considering the rate of flow of fluid through the strip of thickness dy

and integrating it. The rate of flow through strip is

i
d(Q = Velocity at a distance y X Area of strip
r— Umax
1 9p [ty 2] xXdyx1 — b
L P
21 o y Yy (a) (b)
1 ap 2 ‘ /.//.////.//////[//////////////f///. ‘
Q= J dQ = _[ - [fy yldy Velocity distribution and shear stress distribution
across a section of parallel plates.
. ff_f’ _Layp[r ¢ 3
2uox| 2 3| 2uox|2 3 =———p[ty—y2]
21 Ox




= |

Area

Q0

— .1
_12p ox

3

tx1

1 dp 2
12u ox

O, @

Jf!ﬂdf!f”f!“{f!.ﬁ“““

I .
y I x o :



(iii) Drop of Pressure head for a given Length.

I o, O _ 12

U= ——— —

12p ox ox 12

Integrating this equation w.r.t. x, we get

| L 12uu
dp = - d
L P .L 2 &

121
rl

Py—Pr=-— [x, — x;]

12nul
Pr—=P2= i; [ xy—xy,=L]

- l

I .

" |

I .

i .

y | x i :

| :

| tg—ro L —n!
X
1

VIR S —



If h.is the drop of pressure head, then

_p—py, _ 12pul
Pg pg?

(iv) Shear Stress Distribution.
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Assumptions :

(&) (®

Frictional resistance :

1)Variesas V" (n=15t02)

'y : : V = velocity
(P + dP)dA _ _ _
2)Proportional density of fluid

@ @ 3)Proportional to area of surface

INn contact

....................

4)Independent of pressure

5)Depend on nature of surface

contact.
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Derivation
AV = AV,

P, |V _ P V3 (Continuity Equation)

A bz =212 7

g T 2g V1T g T o T 42 (Ideal Fluid)

SR AN N AN

pg 29 Y pg 29 7 L (Real Fluid)

Pq P,

——== h; ... (1)
PY Py

f1 = Frictional resistance per unit wetted area per unit velocity

Frictional Resistance=F, = flm D L V"

F,= fla DLV? (n=2)
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Flow as in x-direction

Local accelerationa, = 0

As per Newtons 2" law: F = ma

F (Resultant force) =0

PlA_ PzA_Fl :O

F
P, -P, = 71
flmDLV?
Po-P ==
4
ftaLv?
Py - P, = D (For horizontal pipe )

UNIT-2
£ p—ng =1 ;gLDV (For inclined pipe )
fr_Cr
p 2
,_ GrALy?
I . g.D
4C,=f  f = Friction factor or Darcy friction factor
LV?
2.9.D

Darcy Wheishbach equation




’ Topic :Turbulent flow UNIT-2

Important Point:

_ fLV? _ _
f— 24D valid for Laminar and Turbulent flow
hy = 32 :‘;L As per Haigen Poiseuille’s equation

fLV? _32uVli
2.9.D  pgD

f - pVD
f= 2—4 R, = Reynolds number for pipe for laminar flow
_f_st_16
Cr=%~ R, Re




’ Topic :Turbulent flow

fLV?
he =
f 2.9.D
32uVlL
pgD
hf= 32uVL

pgD

(Darcy weisbatch equation ) valid for Laminar and Turbulent flow

(As per Haigen Poiseuille’s equation (valid for fully developed laminar flow)

UNIT-2
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Co efficient of friction in terms of wall shear stress

F= Resistance force in the pipe
Ty = Shear stress on the wall of the pipe
PLA— P,A—F=0
P.-P, ) A =F
(P1-P, ) (P1-P, )A=19.m.D.L

Frictional resistance in the pipe

(P,-P; ) = . ZD'L
F=1y.2m.R.L
_To 1t.D.L
F=1y.m.D.L (Pl'Pz)— T 52
4
_ 4-.T0.L
(Py-Py ) =25
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P,—P, _ 4CfLV?
pg 29D (For Horizontal pipe)
4CrLV?
Pl-Pz = f x £9 (For inclined pipe)
2.9.D
4CrlL sz pg _ 4TolL
2.9.D D
_ 2.T0.L .. . . .
Cf = Co-efficient of friction in terms of wall shear stress

pV?

UNIT-2

Darcy friction factor:

f — 4.T0.L
pV?

v= Mean velocity
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characteristics of turbulent Flow.

Gl 0 AN ALY
A Laminar < L Turbulent <
(a) t (b) t
u= f(x,y,z) u= f(x,y,z,t)
v=1(X,y,2) v=1(X,y,z,1)

w=f(X,y,2) w= f(X,y,z,1)



’ Topic :Turbulent flow UNIT-2

Reynolds experiment for turbulent

Shear stress : we initially used Newtons law of viscosity that for steady and laminar flow.

But in the case of turbulent flow

Mean velocity component + fluctuation velocity component
U = Mean velocity component (u )+ fluctuation velocity component (u!)
U=@u)+ (u')
v=@)+ (v')

w=(w)+ (wh)
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Reynolds experiment for turbulent

We initially used newtons law of viscosity that was for steady and laminar flow

But in case of turbulent flow mean velocity component and fluctuation velocity component exist

Shear stress

1

Reynolds given = 7 = pulv u' = In X-direction fluctuating component

vl = In Y-direction fluctuating component

Average shear stress observed in particular range of time :
Time average shear stress (7 = pulv?!)




UNIT-2

’ Topic :Turbulent flow

Prandtl mixing length (L) :

« Mixing length not flow along the length

 Particle jump one plane to another plane. Fluid particle jump moment is always
conserved

It is distance travelled by lump of particles such that moment of fluid particles
does not change

Mixing length (L)

Prandtl given based on the experiment

du du 2
ul =L |— vl =] | — — _ 2 d_u
<d3’> (d)’> t=plL (dy)

Value of shear stress in turbulent flow in terms of mixing length
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Turbulent flow:

Velocity of the fluid particles near the wall is very less as compared to for distance of fluid particles

from the wall even it is turbulent flow fluid particles velocity is very less due to attraction of forces

offered by solid boundary.

The layer inside which the flow is laminar in turbulent flow field such layer is known as

laminar sub layer.

Total sear stress = shear stress near the wall + shear stress due to turbulence
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Prandtl mixing length (L) :

L=Kly k = Karman’s constant = 0.4

2
= 2 du
Mean shear stress =7 = pL (—dy)

T=p(K.y)? (Z—;‘)Z

(du>2 T ) _ R
dy - K.y)? au) - ‘ = 2
g pLE-) (du) \/ p(Ky)? K.y \/;
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(%) - \, p(l’(:_[.y)2 = Kl.y\/é

Assume if y is so small T =

du
du

)

. 1 To
K.y |p

Shear velocity = u”* :\/T;O

Force M.L.T? 1
To = e 0 A e
area L
: Mass kg _ M —3
= Density = = ==—=M.L
p y Volume L3 L3
M.L~1T—2 L
/T—O = —— == meter/sec
D M.L T

(

du
du

)

— 1 *
= K.yu

UNIT-2
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Velocity distribution for turbulent flow

[du=[—u*dy

K.y

u =1 u*lny +c c = constant of integration
k

k 1 N
Boundary conditions: uU=U,,,, at y=R

U=U...+%(ny—InR
Umax = U INR+¢ max + 5 (Iny )

U=U, . +% In® K =0.4
C= Upgr — 2wl R max + ¢ )

U =Upax + o In(2)

Velocity distribution for a turbulent flow in the pipe |y =y + 2.5 u* In®)
R

UNIT-2
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Velocity distribution for a turbulent flow in the pipe

Velocity distribution for a turbulent flow in the pipe
\elocity distribution is logarithmic.

U =Umayx + 2.5 u" In(3)

Prandtl universal velocity distribution for turbulent flow

 Valid For smooth as well as rough pipe.

(Any surface is perfectly smooth )

UNIT-2



Topic :Turbulent flow

UNIT-2

Laminar sub Layer

€ = Average surface roughness

pl = thickness of laminar sub layer

p_€1 <0.25 pipe is smooth

p

0.25 < % < 6 Transition

Velocity defect:

U =Umayx + 2.5 u" In(3)

U on- U=25u" 1n(§)

u at any location with respect to y

31 > 6 pipe is rough surface

Hydro dynamically Smooth or rough surface

______________ LAMINAR SUBLAYER

(a) Smooth boundary

LAMINAR SUBLAYER

(b) Rough boundary




Topic :Turbulent flow

Reynolds number (R, Number)

eu*  &u’
R, Number = — = up

< 4 smooth pipe

> 100 rough pipe

cu*

1%

< 100 transition

Reynolds number in terms of surface roughness

UNIT-2
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Velocity distribution for turbulent flow in smooth pipe

1«
U=—u Iny +c

C=constant
u™ = shear velocity
K =karman’s constant

y = 0 at solid boundary

u=-u*In (0) + ¢

Velocity showing negativity infinity but at some point negative infinity

convert to positive infinity at that point y= y1

So that at that point u=0; y= y!
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u:%u*lny+c
Boundary conditions : y =y ,U=0
1 &
O:;u Iny +c
__l * 1
C= U In y

_l * _l * 1
U—kulny kulny

U
— =2.5u*In ll
u y

ylis distance of the point measured perpendicular to solid boundary at u =0
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UNIT-2
In case of laminar sub layer is parabolic but above laminar sub layer logarithmic.

Nochrodes Experiment : y! value is depond on p! on smooth flow pipe

1 1
y Xp
, _ 0108y Y p5uin,
1 y _ * u y
, _ P “
Y = 107 . ,
u—* =25 |nm
. 116v u”
P u” u yu*
— = 2.5In{— 9.259
. 116 " Y
y o
u*107

u yu'
— =2.51n <— + 5.56)

u v
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Velocity distribution in rough pipe :

U
— =2.5u*In 11
u y

For rough pipe
Average roughness value is more

So laminar sub layer destroyed

Nikordam’s:
yl X 81

u y
u* o u €/30

y*30

U
— =2.5u*In
u €

Y =25In% +251n30
u* )

Y =25InY +85
u* €

UNIT-2

yloc £/30 (For rough pipe)
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FLOW: THROUGH
PIPES




LOSS OF ENERGY IN PIPES

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which some of

the energy of fluid is lost. This loss of energy is classified as:

1. Major Energy Losses 2. Minor Energy Losses

This is due to friction and it is This is due to

calculated by the following formulae: (2) Sudden expansion of pipe
(a) Darcy-Weisbach Formula (b) Sudden contraction of pipe
(b) Chezy's Formula (c) Bend in pipe

(d) Pipe fittings etc.

(e) An obstruction in pipe.



Topic :Flow through pipes

Flow through pipes

Major Losses (95% of contribution in total 10ss)

Friction so Darcy weisbach equation

_ fLV?
hy = 2.9.D

Q:EDZXV

AV

Chezy,s formula :

UNIT-2

V= C +vmi Empirical formula (No
prove but only get by experiment)

il
~ 12D5

V = average velocity

C = Chezy,s constant

m= Hydraulic mean depth

I= Hydraulic slope
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m = area _ mD? 8g
 wetted perimeter 4w D C? = T
m=2
= o [
f
i=tan O =
_ D hy
=C
4]
4LV ?
SY))

fLV? _ 4LV?
2.9.D C2D



Important formulas to solve the problems (Flow
through pipes )
(a) Darcy-Weisbach Formula. The loss of head (or energy) in pipes due to friction is calculated
from Darcy-Weisbach equation which has been derived in chapter 10 and is given by

o4 S L V?
I dx2g
where hf = loss of head due to friction

(11.1)

f = co-efficient of friction which is a function of Reynolds number

1
_ ?ﬁ for R, < 2000 (viscous flow)

= for R, varying from 4000 to 10°

L = length of pipe,
V = mean velocity of flow,
d = diameter of pipe.



Problem 11.1 Find the head lost due to friction in a pipe of diameter 300 mm and length 50 m,

through which water is flowing at a velocity of 3 m/s using (i) Darcy formula, (ii) Chezy's formula for
which C = 60.

Take v for water = 0.01 stoke.

Dia. of pipe, d =300 mm = 0.30 m
Length of pipe, L=50m

Velocity of flow, V=3m/s

Chezy’s constant, C=60

Kinematic viscosity, v=0.01 stoke = 0.01 cm?s = 0.01 x 107 m?%/s.

4.f.L.V?

(1) Darcy Formula h, =
Y ™ dx2g

where ‘f ° = co-efficient of friction is a function of Reynolds number, R,

Vxd
R, = =3'0x0'?f=9x105
vV 01x10




0.079 0.079

f = ].“1- = 5 174 - —[}[}256
R . (9 x 10 )
2
Head lost, h= 4x.00256 X30X3" _ 2638 m. Ans.
0.3 x2.0x981
(ii) Chezy’s Formula.
V=CImi
where C =60, m= £=@ = 0.075 m
4 4
: (31
3=60 /075 i= X =0.0333
60 075
by
L 50

50 h,= 50 x .0333 = 1.665 m. Ans.



Problem 11.2 Find the diameter of a pipe of length 2000 m when the rate of flow of water through
the pipe is 200 litres/s and the head lost due to friction is 4 m. Take the value of C = 50 in Chezy’s
formulae.

Length of pipe, L=2000m
Discharge, Q = 200 litre/s = 0.2 m’/s

Head lost due to friction, hf =4 m

Value of Chezy’s constant, C=50

Let the diameter of pipe = d

Velocity of flow, V= Discharge 0 - 02 - 02x4
Area Edz Edz ndz
d 4 4
Hydraulic mean depth, m= 1
hy 4
Loss of head per unit length, i = — =———=.002

L 2000



V=CAmi
02x4 _ 50 [%x.002
nd 4

d = 3/0.0518=(.0518)"" = 553 mm. Ans.




Problem 11.3 A crude oil of kinematic viscosity 0.4 stoke is flowing through a pipe of diameter
300 mm at the rate of 300 litres per sec. Find the head lost due to friction for a length of 50 m of the pipe.

Problem 11.4 An oil of sp. gr. 0.7 is flowing through a pipe of diameter 300 mm at the rate of
300 litres/s. Find the head lost due to friction and power required to maintain the flow for a length of
1000 m, Take v = .29 stokes.

Problem 11.5 Calculate the discharge through a pipe of diameter 200 mm when the difference of
pressure head between the two ends of a pipe 500 m apart is 4 m of water. Take the value of

4.f.L.V*
dx2g

Problem 11.6 Wafer is flowing through a pipe of diameter 200 mm with a velocity of 3 m/s. Find the
head lost due to friction for a length of 5 m if the co-efficient of friction is given by f = 0.02

.09
+ R0 where R, is Reynolds number. The kinematic viscosity of water = .01 stoke.

&

1= 0.009 in the formula hf =

Problem 11.7 An oil of sp. gr. 0.9 and viscosity 0.06 poise is flowing through a pipe of diameter
200 mm at the rate of 60 litres/s. Find the head lost due to friction for a 500 m length of pipe. Find
the power required to maintain this flow.
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Minor losses : Minor losses constitute of 5% o the total losses and it consider

(a) Sudden expansion loss

(b)Sudden contraction loss As magnitude of minor losses are small in
(c) Entry loss reference to the frictional losses
(d)Exit loss

(e) Bending losses
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a) Sudden expansion loss:

1)steady
2)the pressure in Eddy region is taken as upstream pressure

Momentum integral function:

5 F =pQ (v-u) B

P1A1 +PAy- P1A; — PA, =pQ (V-Vy) =

AZ(P]_ . Pz) — pQ (VZ_Vl) @
42 Fig. 11.1 Sudden enlargement.

Pi—P,=pVo(V, = V;)

, PiA1 +P(Ay- Ay) — P, A, =pQ (Va-V7)
P1—P, _ V7=V

W g




UNIT-2

Topic : Flow through pipes

2 2
b=t (s

pg 29 pg
P1—P,
T % _(hl)SE
_ (vE-v®)
(h)sg = 20

(h)ss=2o(1-2)

(h)se= L (1-2)
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2)EXit loss (’j)
_ (Ve=V)? f
A, = o (h)sc = ngz : \ @ @
PyA : L oA,
(hy SE:V—2 V2 /1 2 _-_h:_ _______ S
' 29 A : : :
(hz)s.c 29 (Cc 1) : © @
3)Sudden in contraction: @
1]
. Ac (h ) _ 0.5 sz Fig.11.2 Sudden contraction.
¢ A UUs.c 29
AV — AV, Entry loss :
, 0512
Ve _ A2 _ 1 ( l)Sudden entry 29

2} Ac Cc
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Bend loss

h _ k.V?
( l)Sudden entry 29

Angle of bend 6 increases = k increases
Radius of pipe 0 increases = k decreases

Reduce of curvature of pipe Increase = K decreases

UNIT-2



Problem 11.8 Find the loss of head when a pipe of diameter 200 mm is suddenly enlarged to a
diameter of 400 mm. The rate of flow of water through the pipe is 250 litres/s.

Dia. of smaller pipe, D= 200 mm = 0.20 m

- Area, A= D2=L (2)*=0.03141 m?
4 4

Dia. of large pipe, D, =400 mm = 0.4 m

. Area, A, = % X (0.4)* = 0.12564 m>

Discharge, Q = 250 litres/s = 0.25 m*/s

Velocity, V, = 0_023 _ 7.96 m/s
A, 03141

Velucity, ) = 0 = 0.25 = 1.99 m/s
A, 12564

Loss of head due to enlargement is given by

V,-v,)"  (7.96-199)
hﬁ, = = = 1.816 m of water. Ans.
2g 2g




Problem 11.9 Ar a sudden enlargement of a water main from 240 mm to 480 mm diameter, the
hvdraulic gradient rises by 10 mm. Estimate the rate of flow. (J.N.T.U., S 2002)

— — o — — g

Problem 11.10 The rate of flow of water through a horizontal pipe is 0.25 m’/s. The diameter of the
pipe which is 200 mm is suddenly enlarged to 400 mm. The pressure intensity in the smaller pipe is
11.772 N/em®. Determine :
(1) loss of head due to sudden enlargement, (ii) pressure intensity in the large pipe,
(iif)y power lost due to enlargement.

Problem 11.11 A horizontal pipe of diameter 500 mm is suddenly contracted to a diameter
of 250 mm. The pressure intensities in the large and smaller pipe is given as 13.734 N/em® and
11.772 N/em® respectively. Find the loss of head due to contraction if C, = 0.62. Also determine the
rate of flow of water.
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- - - - - | D.
Pipes in series and pipes in parallel: D
D:
Q Q
_ _ _ - (1) {<) (3} -—
Pipes In series :
a) Q1= Q2= Q3= Q4= 0s= Q6= Oy
b) hl — hll +h12 + hlZ + o +hln
fL1Q? _ fL1Q®  fLQ* | fL3Q® | fL4Q” | fLsQ?
12DS ~ 12D%  12DS + 12D3 t 12D2 12D2
e 1 2 3 4 5

E—L_l __|_ _|_ _|_
= =
D; D} D3 D3 D; D?




Problem 11.31 Three pipes of lengths 800 m, 500 m and 400 m and of diameters 500 mm, 400 mm
and 300 mm respectively are connected in series. These pipes are to be replaced by a single pipe of
length 1700 m. Find the diameter of the single pipe.

Length of pipe 1, L, =800 m and dia., d; = 500 mm = 0.5 m
Length of pipe 2, L, =500 m and dia., d, = 400 mm = 0.4 m
Length of pipe 3, L, =400 m and dia., d; = 300 mm = 0.3 m
Length of single pipe, L=1700 m

17(5}0=80§}+502+40{5} L_e:£+L_2+L3+L4+L5
d 5 4 0.3 pf DS DS ' DS ' DY ' D§

= 25600 + 48828.125 + 164609 = 239037

s 1700

= =.007118
239037

d = (.007188)%2 = 0.3718 = 371.8 mm. Ans.
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. Pi ’ lel
Pipes in parallel: ipes in Paralle

a)Qn = Q1+ Q2+Q3+ Qs+ Qs+ Qs . = |

b) hl = h11 :h12 — hlZ — e :hln _ : '
2 - —
Equivalent pipes : having same as that of . ; -
compound pipes A equivalent pipe to a compound - %'
Q = + Q5+ Q
pipe is a pipe of uniform diameter having same ‘O;a' SRR

discharge and same head loss at that of the

compound pipe.

p, = fLla@/m)?® _ f1.Q°
l 12D5 12D3

Le — Le
n2D> D3




Problem 11.32 A main pipe divides into two parallel pipes which again forms one pipe as shown in
Fig. 11.17. The length and diameter for the first parallel pipe are 2000 m and 1.0 m respectively, while
the length and diameter of 2nd parallel pipe are 2000 m and 0.8 m. Find the rate of flow in each
parallel pipe, if total flow in the main is 3.0 m’/s. The co-efficient of friction for each parallel pipe is
same and equal to .00).

Length of pipe 1, L, =2000 m fi =f,=f=.005

Dia. of pipe 1, dy=10m Q, = discharge in pipe 1
Length of pipe 2, L, =2000 m Q, = discharge in pipe 2
Dia. of pipe 2, d,=0.8m

Total flow, 0 =3.0 m¥s 0=0,+0,=30

Af,LV; _Af,LVy

d, X2g d, X2g

4 x.005 x 2000 x V; _ 4x.005 x 2000 x V;

1.0 x 2 x9.81 0.8 x2x9381




V V.

V1= 2 — 2
J0.8 .894
n 2 n 2 V)
=—d, " XV, =— (1
Q=g dixVi= rxg
T " T
Q2= & XV, = 2 (8)x Vy= o X 64XV,
Q=0,+0,=3.0
T V2 T 64v,=30
470894 4

i = 2.17 m/s.

V=
1.3811



v, 217

V, = = = 2.427 m/s
894 (0.894
Q, = 2 d"xV, = 2 X 1% 2.427 = 1.906 m’/s. Ans.

0,=0-0,=3.0-1.906 = 1.094 m>/s. Ans.
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UNIT-

Power transmission through the pipe :

Ptheoritical - Pth - (OQH

Poctuar = Poce = @Q(H- Hy)

P actual _P act
P theoritical P th

Npower transmission —

H-H,

NPrower transmission = H

| »
Condition for maximum Power transmission :

Poctuar = Poce = @Q(H- Hp)

dpP actual — O
dQ

H:3HL
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Maximum n of power transmission
_H-H,

NPower transmission = H

_3H;—H| _

3, 66.67 %

NPower transmission = 66.67 %0
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Turbulent

Transitional




