Fluid Mechanics
and
Hydraulic Machines



Definition:

Mechanics is the oldest physical science that deals with both stationary and moving

bodies under the influence of forces.

 The branch of mechanics that deals with bodies at rest is called statics, while the

branch that deals with bodies in motion 1s called dynamics.

* The subcategory fluid mechanics 1s defined as the science that deals with the
behavior of fluids at rest (fluid statics) or in motion (fluid dynamics), and the

Interaction of fluids with solids or other fluids at the boundaries.

* The study of fluids at rest is called fluid statics.



Definition:

* The study of fluids in motion, where pressure forces are not considered, Is called
fluid kinematics and If the pressure forces are also considered for the fluids iIn

motion. that branch of science is called fluid dynamics.

 Fluid mechanics itself is also divided into several categories.

« The study of the motion of fluids that are practically incompressible (such as liquids,

especially water, and gases at low speeds) 1s usually referred to as hydrodynamics.

A subcategory of hydrodynamics is hydraulics, which deals with liquid flows iIn

pipes and open channels.



What is a Fluid?

« A substance exists in three primary phases: solid, liquid, and gas. A substance in the

liquid or gas phase is referred to as a fluid.

* Distinction between a solid and a fluid 1s made on the basis of the substance’s ability to

resist an applied shear (or tangential) stress that tends to change its shape.

A solid can resist an applied shear stress by deforming, whereas a fluid deforms

continuously under the influence of shear stress, no matter how small.

* Insolids stress is proportional to strain, but in fluids stress is proportional to strain rate.
Or rate of shear deformation



What i1s a Fluid?

When a constant shear force Is
applied, a solid eventually stops ,at
some fixed strain angle, whereas a
fluid strain, never stops deforming
and approaches a certain rate of

strain.
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Figure.

Deformation of a rubber eraser
placed between two parallel plates
under the influence of a shear force.




What is a Fluid?

* Ina liquid, molecules can move relative to each other, but
the volume remains relatively constant because of the Free surface
strong cohesive forces between the molecules. |

« As aresult, a liquid takes the shape of the container it is

In, and i1t forms a free surface in a larger container in a

gravitational field.
* A gas, on the other hand, expands until it encounters the
walls of the container and fills the entire available space.

« This is because the gas molecules are widely spaced, and the cohesive forces between them are

very small. Unlike liquids, gases cannot form a free surface



What i1s a Fluid?

Difference between liquids and solids ?

liquids ______________Gases

Difficult to compress and often Easily to compress — changes of

regarded as incompressible volume is large, cannot normally
be neglected and are related to
temperature

Occupies a fixed volume and will No fixed volume, it changes
take the shape of the container volume to expand to fill the
containing vessels

A free surface is formed if the Completely fill the vessel so that
volume of container is greater no free surface is formed.
than the liquid.



Application areas of Fluid Mechanics

* Mechanics of fluids is extremely important in many areasof engineering and science.

Examples are:

Biomechanics
» Blood flow through arteries and veins
» Airflow in the lungs

* Flow of cerebral fluid

Households :

 Piping systems for cold water, natural gas, and sewage.

 Piping and ducting network of heating and air-conditioning systems

 refrigerator, vacuum cleaner, dish washer, washing machine, water meter, natural gas meter, air

conditioner, radiator, etc.



Application areas of Fluid Mechanics

Mechanical Engineering

« Design of pumps, turbines, air-conditioning equipment, pollution-control equipment, etc.

« Design and analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines, biomedical
devices, the cooling of electronic components, and the transportation of water, crude oil, and
natural gas.

Civil Engineering

« Transport of river sediments.

 Pollution of air and water

« Design of piping systems

* Flood control systems



Application areas of Fluid Mechanics

High speed train

Wind
turbines

Pollutant dispersion over a city

Smoke from
a stack




Properties of Fluids

a)Density or Mass Density:
Density or mass density of a fluid is defined as the ratio of the mass of a fluid to its volume at specified

temperature and pressure . Thus mass per unit volume of a fluid is called density. It is denoted the
symbol p (rho).

The unit of mass density in Sl unit : kg per cubic meter, i.e ., kg/m’.

* The density of liquids may be considered as constant while that of gases changes with the variation

of pressure and temperature.

Mathematically mass density is written as. Mass of fluid/Volume of fluid



Density or Mass Density:
* The density of a substance, in general, depends on temperature and pressure.
« The density of most gases is proportional to pressure and inversely proportional to temperature.

« Liquids and solids, on the other hand, are essentially incompressible substances, and the

variation of their density with pressure is usually negligible.



b) Specific weight or Weight Density :
» Specific weight or weight density of a fluid is the ratio between the weight of a fluid to

its volume.

» Thus weight per unit volume of a fluid 1s called weight density and it is denoted by the

symbol w.

~ Weightof fluid  (Mass of fluid) x Acceleration due to gravity
Volume of fluid Volume of fluid
~ Massof fluidx g

"~ Volume of fluid
=pPpXg
W= pg

W




c) Specific Volume :

« Specific volume of a fluid is defined as the volume of a fluid occupied by a unit mass or volume

per unit mass of a fluid is called specific volume.

Mathematically, it is expressed as

U Volume of fluid | _A
pe Mass of fluid Mass of fluid ~ p
Volume

» Thus specific volume is the reciprocal of mass density. It is expressed as m3/kg.

« It 1s commonly applied to gases.



Specific Gravity (S.G) :

« Specific gravity is defined as the ratio of the weight density (or density) of a fluid to
the weight density (or density) of a standard fluid.

« For liquids, the standard fluid is taken water and
for gases, the standard fluid is taken air.

Specific gravity is also called relative density. It is dimensionless quantity and is denoted by the

symbol S. i i : *liqui
y S\(or liquids) = Wc!ght dcnsn'ty(dcnsTty)of liquid
Weight density (density) of water

Weight density (density) of gas
Weight density (density)of air

S(for gases) =

Thus weight density of a liquid = § x Weight density of water
=Sx1000x9.81 N/m’
Thus density of a liquid = § x Density of water
=S x 1000kg/m’




Specific gravities of some

substances at 0°C

Substance SG
Water 1.0
Blood 1.05
Seawater 1.025
Gasoline 0.7
Ethyl alcohol 0.79
Mercury 13.6
Wood 0.3-0.9
Gold 19.2
Bones 1.7-2.0
ice 0.92
Air (at 1 atm) 0.0013




| Example 1.
Calculate the specific weight, density and specific gravity of one
liter of a liquid which weighs 7 N.




Example 1.
Calculate the specific weight, density and specific gravity of one
liter of a liquid which weighs 7 N.

Solution. Given :

. ST _ . 1)
Volume = 1 litre = 'mm ( 1 litre lmm or 1 litre = 1000 cm
Weight =
() Specificweight(w) = oot _ __ TN - 2000 N/m’. Ans.
Volume ( ] )m’
1000
(if) Density (p) = f = _790:0 kg/m® = 713.5 kg/m’. Ans.

_ Density of liquid _ 7135
Denmy of water 1000

= 0.7135. Ans.

(iii) Specific gravity (*- Density of water = 1000 kg/m’)



Example 2. Calculate the density, specific weight and weight of
‘one liter of petrol of specific gravity = 0.7




| Example 2. Calculate the density, specific weight and weight of |
~one liter of petrol of specific gravity = 0.7

Solution. Given:  Volume = | litre = | x 1000 cm’ = '::? m' =0.001 m*
Sp. gravity $§=0.7
(i) Density (p)

Density (p) = § x 1000 kg/m’ = 0.7 x 1000 = 700 kg/m". Ans.
(i) Specific weight (w)

w=pxg="700x9.81 N/m'= 6867 N/m*. Ans.
(iii) Weight (W)

We know that specific weight = b, o
Volume
1% 113
= r 6867 = ——
- v=20m ° 0.001

W = 6867 x 0.001 = 6.867 N. Ans.



Viscosity:

 Viscosity is defined as the property of a fluid which offers resistance to the movement of one layer

of fluid over another adjacent layer of the fluid.

 When two layers of a fluid, a distance "dy" -

apart move one over the other at different

dy
velocities say “u” and “u+ du” as shown In f"
y
Fig.1.1, the viscosity together with relative I VELOCITY PROFILE

velocity causes a shear stress acting between

— = U

the tluid layers: Fig. 1.1 Velocity variation near a solid boundary.

« The property of the fluid which offers internal resistance between two adjacent layers is known as
Viscosity
a)cohesive forces
b)molecular momentum transfer in perpendicular direction between two adjacent layers.
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Viscosity:

» The top layer causes a shear stress on the adjacent lower layer while the lower layer

causes a shear stress on the adjacent top layer.

« This shear stress is proportional to the rate of change of velocity with respectto y. It is

denoted by symbol T called Tau.

Mathematically,

du

T o —




« where | (called mu) is the constant of proportionality and is known as the coefficient of

dynamic viscosity or only viscosity or Absolute viscosity

» du/dy represents the rate of shear strain
or rate of shear deformation

or velocity gradient.

__v
= du

dy

* Thus viscosity is also defined as the shear stress required to produce

unit rate of shear strain.



» The unit of viscosity is obtained by putting the dimension of the quantities.

Shear stress Force/Area

-

P Change of velocity = (Lcng@_)x I

E—han‘g: of distance “Time Leng(ﬂ

Force/(length)? _ Force X Time
l (Length)?

Time

. . . Newtonsecond Ns
SI unit of viscosity= - =—
m- m-




Kinematic Viscosity/absolute viscosity/dynamic viscosity :

 Itis defined as the ratio between the dynamic viscosity and density of fluid.

It is denoted by the Greek symbol (v) called "nu’.

Mathematically,

" Viscosity  u

Density p

* The Sl unit of kinematic viscosity is m/s.






Newton's Law of Viscosity:

* |t states that the shear stress (T) on a fluid element layer in directly proportional to the

rate of shear strain. The constant of proportionality is called the co-efficient viscosity.

Mathematically, it is expressed as

7 = pﬂ
dy

 Fluids which obey the above relation are known as Newtonian fluids and

the fluids which do not obey the above relation are called Non-Newtonian fluids.



Variation of Viscosity with Temperature

« Temperature affects the viscosity.

« The viscosity of liquids decreases with the increase of temperature while
the viscosity of gases increases with increase of temperature.

This Is due to reason that the viscous forces in a fluid are due to cohesive forces and

molecular momentum transfer.

 In liquids the cohesive forces predominates the molecular momentum transfer due to closely

packed molecules and with the increase in temperature, the cohesive forces decreases with

the result of decreasing viscosity.



Types of Fluids

a)ldeal Fluid :A fluid, which is incompressible and is having no
viscosity, Is known as an ideal fluid. Ideal fluid is only an imaginary

fluid as all the fluids, which exist, have some viscosity.

b)Real fluid : A fluid, which possesses viscosity, is known as real

fluid. All the fluids: in actual practice, are real fluids.

C)Newtonian Fluid :A real fluid, in which the shear stress
indirectly, proportional to the rate of shear strain (or velocity

gradient), is known as a Newtonian fluid.

Shear stress

<— Ideal solid Ideal Plastic fluid

Non-Newtonian fluid

\l, )
/
// Niwtonian fluid

Ideal fluid

\ 4

o . [ éu)
Velocity gradient =1
\ Oy )



d) Non-Newtonian fluid :A real fluid, in which shear stress
IS not proportional to the rate of shear strain (or velocity

gradient), known as a Non-Newtonian fluid.

e) Ideal Plastic Fluid. :A fluid, in which shear stress is more than
the yield value and shear stress 1s proportional to the rate of shear

strain (or velocity gradient), is known as ideal plastic fluid.
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Fig. 1.2 Types of fluids.
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Non-Newtonian Fluids

du
t cm—
(r*ng)

Purely Viscous Fluids

Visco-elastic Fluids

Time - Independent

Time - Dependent

1. Pseudo plastic Fluids

{dnJ"
r=4—| :n<l
dv

Example: Blood milk
2. Dilatant Fluids

’{du]n
r=4— | :n>1
dv

Exampiesumr
3. Bingham or Ideal Plastic
Fluid

‘{du]n
r=7T,+ M —
dy

Example: Wate} suspensions of clay
and flyash

1. Thixotropic Fluids
du\
r=4—\| +f(
/{ dy] J()

ftv)is decreasing
Example: Printer ink; crude oil

2. Rheopectic Fluids

A& 1

[fyis increasing
Example: Rare liquid solid suspension

Visco- elastic Fluids

r=;z£"—'+a£

dy
Example: Liquid-solid
gwmﬁons in pipe




Non-Newtonian Fluids
. _ o dug
Non- Linear t=A( dy) +

: .., de
A) U varies with =

Bingam Plastic

Pseudoplastic Fluid

Newtonian Fluid

Dilatent Fluid

v



Example 3

If the velocity distribution over a plate is given by

u=2y-y’
3y 7

in which u is velocity in metre per second at a distance y
metre above the plate, determine the shear stress at y = ()
and y= 0.15 m. Take dynamic viscosity of fluid as 8.63
poises.




du 2

: . z . — O — —
Solution. Given : u 3y- y . 3 2y
y
("_“] - i’i) =2 _20)=2 =0667
d.\' “ynl) \d’ y=0 3 3
(
Ak (LJ_“.] or .‘2‘.] =2 _2x.15=.667-.30 = 0.367
Y Jux=018 \dy y=0.15

Value of j = 8.63 poise = ﬁi% SI units = 0.863 N s/m’

Now shear stress is given by equation (1.2) as T=}

(i) Shear stress aty = 0 is given by
du
dy

dy

T =M (_) = 0.863 x 0.667 = 0.5756 N/m’. Ans.
y=0

(if) Shearstressaty=0.15mis given by

(t).z =015 = H (

du
dy

.._] = 0.863 x 0.367 = 0.3167 N/m?. Ans.
y=015



Problem 1.4 A plate 0.025 mm distant from a fixed plate, moves at 60 cm/s and requires a force of
2 N per unit area i.e., 2 N/m” to maintain this speed. Determine the fluid viscosity between the plates.

1 F

-

FIXED PLATE
Fig. 1.3



Problem 1.4 A plate 0.025 mm distant from a fixed plate, moves at 60 cm/s and requires a force of
2 N per unit area i.e., 2 N/m” to maintain this speed. Determine the fluid viscosity between the plates.

Distance between plates, dy = .025 mm
=.025x 107 m

Velocity of upper plate, u=60cm/s = 0.6 m/s

N
Force on upper plate, F=20—.
m
. . du
Using the equation (1.2), we have T=LL d_
y

where  du = Change of velocity = u — 0 = u = 0.60 m/s
dy = Change of distance = .025 x 10 m

N

T = Force per unit area = 2.0 —

m

1 F

-

FIXED PLATE
Fig. 1.3



0.60

20=p
025%x107°
-3
_ 2.0x.025x10 ~ 333 %105 ij
0.60 m

= 8.33 x 107> x 10 poise = 8.33 x 107! poise. Ans.



Thermodynamic Properties

* Fluids consist of liquids or gases. But gases are compressible fluids and hence

thermodynamic properties play an important role.

* With the change of pressure and temperature, the gases undergo large variation in
density.

* The relationship between pressure (absolute), specific volume and temperature
(absolute) of a gas is given by the equation of state as

PV=mRT

where P = Absolute pressure of a gas in N/m”
V= Volume
m = Mass
R = Gas Constant

T = Absolute Temperature



Thermodynamic Properties:

* The value of gas constant R is R =287 Unit :J/kg K

Isothermal Process: If the changes in density occurs at constant

temperature, then the process is called isothermal and relationship between

pressure (p) and density (p) is given by D

P

= constant

Adiabatic Process. If the change in density occurs with no heat exchange to
and from the gas, the process is called adiabatic. And if no heat is generated
within the gas due to friction, the relationship between pressure and density is

given by

Lk = constant

p




Thermodynamic Properties

where k = Ratio of specific heat of a gas at constant pressure and constant volume.

k = 1.4 for air



Compressibility () and Bulk Modulus (K)

« Compressibility (B) is the reciprocal of the bulk modulus of elasticity, K which is

defined as the ratio of compressive stress to volumetric strain.

- ¥y -
-

Y e o dag o Let V= Volume of a gas enclosed in the cylinder
LI = |
V1 A PISTON _
N - P =Pressure of gas when volume is V
| 1 STET) o
(I
L .
v Let the pressure is increased fo P+ dp,
CYLINDER

the volume of gas decreases from V to V— dV.

Then increase in pressure = dp
Decrease in volume =dV
Volumetric strain = - dV/V



- ve sign means the volume Decreases with increase of Pressure.

. Bulk modules K = lncreaseof.press.ure
Volumetricstrain . 4 -a.v.
-
__dp_ _(/_pV B e
-dv dV
\'%

Compressibility is given by = 1/K




Surface Tension and Capillarity

Surface tension : Is defined as the tensile force acting on the surface of a liquid in contact with a gas or
on the surface between two immiscible liquids such that the contact surface behaves like a membrane

under tension.

FREE SURFACE

o Surface tension is created due to the unbalanced cohesive forces

acting on the liguid molecules at the fluid surface.

* Molecules in the interior of the fluid mass are surrounded by

molecules that are attracted to each other equally.

Fig. 1.10 Surface tension.

« However, molecules along the surface are subjected to a net force toward the interior.

« The apparent physical consequence of this unbalanced force along the surface is to create the hypothetical

skin or membrane.



A tensile force may be considered to
be acting In the plane of the surface

along any line in the surface.

The intensity of the molecular
attraction per unit length along any
line in the surface is a called the

surface tension. inside the liquid

It 1s denoted by Greek letter ¢ (called sigma).
The Sl unit is N/m.

'7’(
%

- A molecule
on the surface

—A molecule
inside the
liquid




Surface Tension on Liquid Droplet :

Consider a small spherical droplet of a liquid of radius 'r'. On the
entire surface of the droplet, the tensile force due to surface tension (a) DRPLET (b) SURFACE TENSION

will be acting.

Let o Surface tension of the liquid

p = Pressure intensity inside the droplet (in excess of the outside
: _ (c) PRESSURE FORCES
pressure intensity)

d = Dia. of droplet.

(1) tensile force due to surface tension acting around the circumference of the cut portion as shown
in Fig. 1.11 (b) and this is equal to
= ¢ X Circumference

=0oXnd

.. L Tt .
(ii) pressure force on the area n d*=p x 1 d* as shown in



Fig. 1.11 (c). These two forces will be equal and opposite
under equilibrium conditions, i.e.,

px; d* =0 xnd

or p= = 7 .(1.14)



1.6.2 Surface Tension on a Hollow Bubble. A hollow bubble like a soap bubble in air has two
surfaces in contact with air, one inside and other outside. Thus two surfaces are subjected to surface
tension. In such case, we have

px%f:Zx(ﬂxnd}l

p=20md 30 (1.15)

T .- d
S d
4

< >

F A R
-«
< T~




1.6.3 Surface Tension on a Liquid Jet. Consider a liquid jet of diameter ‘d’ and length ‘L’ as
shown in Fig. 1.12.
Let p = Pressure intensity inside the liquid jet above the outside pressure

o = Surface tension of the liquid. T pi
Consider the equilibrium of the semi jet, we have pl E
Force due to pressure = p X area of semi jet E -

=pxLxd L c “ E

Force due to surface tension =0 X 2L. “ 4]
Equating the forces, we have “ A
pXLxd=0x2L v _‘: 4

cXxX2L d “F

p = T xd ..(1.16) (a) (b)

Fig. 1.12 Forces on liquid jet.



Problem 1.26 Find the surface tension in a soap bubble of 40 mm diameter when the inside
pressure is 2.5 N/m* above atmospheric pressure.

Solution. Given :

Dia. of bubble, d=40mm=40x 10> m
Pressure in excess of outside,p = 2.5 N/m*

For a soap bubble, using equation (1.15), we get

p=8—n or 2.5= 8}“}3
d 40x 10

-3
— 25x40x10 N/m = 0.0125 N/m. Ans.

0]



Surface Tension and Capillarity

Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small tube relative to the

adjacent general level of liguid when the tube is held vertically in the liquid.

The rise of liquid surface is known as capillary rise while the fall of the liquid surface is known as

capillary depression.

The attraction (adhesion) between the wall of the tube and liquid molecules is strong enough to
overcome the mutual attraction (cohesion) of the molecules and pull them up the wall. Hence, the

liquid is said to wet the solid surface.

It is expressed in terms of cm or mm of liquid. Its value depends upon the specific weight of the

liquid, diameter of the tube and surface tension of the liquid.



Air

Wetting and non-wetting liquid
%7

0<90° 0=00°

<2 Wetting Liquid

m
9<E

2 Non-wetting Liquid

L

2 For pure water in contact with a clean glass surface 6 is essentially zero
degree.



Capillary Action

: |\9/ 2nRo

y:rth

—=| 2R p—
(a) (h) (c)
Wetting Liquid Non- Wetting Liquid

Angle of contact for non wetting liquids is more than 90°

_ 20cos0
=R
y is specific weight; weight per unit volume




Surface Tension and Capillarity

Expression for Capillary Rise

* Consider a glass tube of small diameter ‘d’ opened at both

ends and is inserted in a liquid, say water.

« The liquid will rise in the tube above the level of the liquid.

« Let h = the height of the liquid in the tube . Under a state
of equilibrium, the weight of the liquid of height h is
balanced by the force at the surface of the liquid in the
tube. But the force at the surface of the liquid in the tube

IS due to surface tension.




Expression for Capillary
Rise

Let Sigma = Surface tension of liquid

teta(0) = Angle of contact between the liquid and glass tube

The weight of the liquid of height h in the tube =
(Area of the tube x h)x px g

=§ dxhxpxg

where p = Density of liquid
Vertical component of the surface tensile force
= (0 x Circumference) x cos 6
=oxndxcos®
For¢quilibrium, equating (1.17) and (1.18), we get

-}d’xhkpxgzoxxdxcosﬂ

" oxndxcoso_ 40cosO

or h =
pxgxd

R 2
4d XpXg



Expression for Capillary Rise

The value of teta between water and clean glass tube is approximately equal to zero and hence cos

(teta) Is equal to unity. Then rise of water 1s given by

b 4o
pxgxd

L

Contact angle depends on both the liquid and the solid.

If teta is less than 90°, the liquid is said to "wet" the solid.

However, if teta is greater than 90°, the liquid is repelled by the solid, and tries not to "wet* — (Non wetting ) it.

For example, water wets glass, but not wax. Mercury on the other hand does not wet glass.



Capillarity :

Meniscus—‘
& u
| —
h>0 Meniscus \‘
S \
(a) Wetting (h) Nonwetting e
fluid fluid

If the glass tube is dipped in mercury, the revel of mercury in the tube will be lower than the

general level of the outside liquid as shown above.



Expression for Capillary Fall
Let h = Height of depression in tube.

« Then in equilibrium, two forces arc acting on the mercury |
inside the tube.

« First one is due to surface tension acting in the downward

direction and is equal to © x d x cos 0.

« Second force i1s due to hydrostatic force acting upward
MERCURY

and is equal to intensity of pressure at a depth 'n' x Area



Expression for Capillary Fall

n
=p X zd’apgxhx 1:- d* (. p=pgh)
Equating the two, we get

oxndxcos0=pghx -} d’
40 cosB
h =
pgd

Value of 0 for mercury and glass tube is 128°



Capillarity...Example 1

» Calculate the capillary rise in a glass tube of 2.5 mm
diameter when immersed vertically in (a) water and (b)
mercury. Take surface tensions ¢ = 0.0725 N/m for
water and o = 0.52 N/m for mercury in contact with
air. The specific gravity for mercury is given as 13.6
and angle of contact = 130



Capillarity...Example 1

» Calculate the capillary rise in a glass tube of 2.5 mm
diameter when immersed vertically in (a) water and (b)
mercury. Take surface tensions ¢ = 0.0725 N/m for
water and o = 0.52 N/m for mercury in contact with
air. The specific gravity for mercury is given as 13.6
and angle of contact = 130°

Solution. Given :

Dia. of tube, d=25mm=25x10"m -
Surface tenstion, o for water ="0.0725N/m

o for mercury = 0.52 N/m

Sp. gr. of mercury = 13.6



Capillarity...Example 1

. Density S = 13.6 x 1000 kg/m’.
(a) Capillary rise for water (0 = 0)

40 4 x 00725
pXgxd 1000x981x%25x10™
=.0118 m = 1.18 cm. Ans.

Using equation (1.20), we get h =

(b) For mercury
Angle of constant between mercury and glass tube, 8 = 130°
40 cos® 4 x 0.52 x cos 130°

pxgxd 136x1000x981x25x107>
= —-.004 m = - 0.4 cm. Ans.
The negative sign indicates the capillary depression.

Using equation (1.21), we get h =



Capillarity...Example 2

* Find out the minimum size of glass tube that can be used to
measure water level if the capillary rise in the tube is to be
restricted to 2 mm. Consider surface tension of water in
contact with air as 0.073575 N/m.



* Find out the minimum size of glass tube that can be used to
measure water level if the capillary rise in the tube is to be
restricted to 2 mm. Consider surface tension of water in
contact with air as 0.073575 N/m.

Solution. Given :
Capillary rise, h=20mm=20x10"m
Surface tension, o =0.073575 N/m
Let dia. of tube -
The angle 0 for water © o=
The density for water, p = 1000 kg/m*

b 8 005 10-0 o 8% 0073575

- pxgxd 1000981 xd
o S SSATIERED = (D1 i .0 A

1000 x 981 x2x10~*
Thus minimum diameter of the tube should be 1.5cm.













A
1,

Y GAUGE PRESSURE
ATMOSPHERIC
/PRESSURE
- kv VACUUM PRESSURE
ABSOLUTE e

PRESSURE\\I B

ABSOLUTE ZERO PRESSURE

Pressure Measurement

1. Atmospheric Pressure

2. Absolute Pressure

— PRESSURE

3.Gauge Pressure

4 \accum Pressure

1.Atmospheric Pressure : The Pressure is exerted by the Environmental mass on the

earth surface

P, =101.325K pa
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i GAUGE PRESSURE
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2. Gauge pressure is defined as the pressure which is B P TEEERIR EEE

2. Absolute pressure : Absolute pressure Is defined as the

pressure which iIs measured with reference to absolute

—— > PRESSURE

vacuum pressure.

measured with the help of a pressure measuring instrument,
In which the atmospheric pressure is taken as datum.

The atmospheric pressure on the scale is marked as zero.

Mathematically :
3. Vacuum pressure is defined as the (#) Absolute pressure
_ = Atmospheric pressure + Gauge pressure
pressure below the atmospheric pressure. or Pab= Pam * Pgauge

(11) Vacuum pressure
= Atmospheric pressure — Absolute pressure.



Atmospheric Pressure : The Pressure is exerted by the Environmental mass on the earth

surface

P,tm =101.325K pa

Note. (i) The atmospheric pressure at sea level at 15°C is 101.3 kN/m? or 10.13 N/cm? in SI unit. In case of
MKS units, it is equal to 1.033 kgfx‘cmz.
(ii) The atmospheric pressure head 1s 760 mm of mercury or 10.33 m of water.



Measurement of Pressure

The pressure of a fluid is measured by the following devices :
1. Manometers

2. Mechanical Gauges.

1.Manometers: Manometers are defined as the devices used for measuring the pressure
at a point in a fluid by balancing the column of fluid by the same or another column of
the fluid.

They are classified as :(a) Simple Manometers,

(b) Differential Manometers.



SIMPLE MANOMETERS : A simple manometer consists of a
glass tube having one of its ends connected to a point where
pressure 1S to be measured and other end remains open to

atmosphere. Common types of simple manometers are :

1. Pilezometer,
2. U-tube Manometer, and

3. Single Column Manometer.



1. Piezometer :1t is the simplest form of manometer used for measuring
gauge pressures. One end of this manometer is connected to the point
where pressure Is to be measured and other end Is open to the atmosphere

as shown in Figure.

The rise of liquid gives the pressure head at that point. If at a
point A, the height of liquid say water is h in piezometer tube,

then pressure at A

N
=pXgXxXh—.
m

Dy g g M g g Py Wy Pt Bt Bty Wyt hy ¥

Fig. 2.8 Piezomerter.



2.U-tube Manometer. It consists of glass tube bent in U-shape, one
end of which is connected to a point at which pressure is to be
measured and other end remains open to the atmosphere as shown in

Figure. The tube generally contains mercury or any other liquid

whose specific gravity is greater than the specific gravity of the

liquid whose pressure is to be measured.

(a) For Gauge Pressure.
Let B is the point at which pressure is to be measured, whose value is
P . The datum line is A-A.
Let h; = Height of light liquid above the datum line (a) For gauge pressure
h, = Height of heavy liquid above the datum line
S1 =p. gr. of light liquid
p1= Density of light liquid = 1000 x $;
S, = Sp. gr. of heavy liquid
p, = Density of heavy liquid =1000 x S,




(a) For Gauge Pressure.

Let B is the point at which pressure is to be measured, whose value is P . The

datum line is A-A.

Let h; = Height of light liquid above the datum line
h, = Height of heavy liquid above the datum line

S1 =p. gr. of light liquid

p1= Density of light liquid = 1000 x $;
S, = Sp. gr. of heavy liquid (a) For gauge pressure
p1 = Density of heavy liquid = 1000 x S,

As the pressure is the same for the horizontal surface. Hence pressure above the horizontal datum
line A-A in the left column and in the right column of U-tube manometer should be same.

Pressure above A-A in the left column =p+p,XgXxh
Pressure above A-A in the right column =Py, X g Xh,
Hence equating the two pressures p+pgh, = p,gh,

P = (Paghy — py X g X hy).



() For Vacuum Pressure. For measuring vacuum pressure, the level of the heavy liquid in the
manometer will be as shown in Fig. 2.9 (b). Then

Pressure above A-A in the left column = p,gh, + pigh, +p
Pressure head in the right column above A-A =0
Paghy + pighy +p=0

p=—(Paghy + pighy).

(b) For vacuum pressure



Problem 2.9 The right limb of a simple U-tube manometer containing mercury is open to the
atmosphere while the left limb is connected to a pipe in which a fluid of sp. gr. 0.9 is flowing. The
centre of the pipe is 12 cm below the level of mercury in the right limb. Find the pressure of fluid in the

pipe if the difference of mercury level in the two limbs is 20 cm.

Fig. 2.10



Solution. Given :

Sp. gr. of fluid, 5, =09
Density of fluid, p, =S, x 1000 = 0.9 x 1000 = 900 kg/m"
Sp. gr. of mercury, S, =13.6
Density of mercury, P, = 13.6 x 1000 kg/m®
Difference of mercury level, h, =20 cm =0.2 m
Height of fluid from A-A, hy=20-12=8 ¢cm =0.08 m

Let p = Pressure of fluid in pipe
Equating the pressure above A-A, we get
P+ pighy = pyghy
p + 900 x 9.81 x 0.08 = 13.6 x 1000 x 9.81 x .2
p=13.6 x 1000 x 9.81 x .2 — 900 x 9.81 x 0.08 Fig. 2.10
= 26683 — 706 = 25977 N/m* = 2.597 N/cm®. Ans.




Problem 2.10 A simple U-tube manometer containing mercury is connected to a pipe in which
a fluid of sp. gr. 0.8 and having vacuum pressure is flowing. The other end of the manometer is
open to atmosphere. Find the vacuum pressure in pipe, if the difference of mercury level in the

two limbs 1s40 cm and the height of fluid in the left from the centre of pipe is 15 cm below.




Solution. Given :

Sp. gr. of fluid, S;=0.8

Sp. gr. of mercury, S, = 13.6
Density of fluid, p; = 800
Density of mercury, p, = 13.6 x 1000

Difference of mercury level, i, = 40 cm = 0.4 m. Height of liquid in left limb, ),
= 15 cm = 0.15 m. Let the pressure in pipe = p. Equating pressure above datum
line A-A, we get

P.ghy + pighy +p =0

p=—1p8h + p18hl
= — [13.6 x 1000 x 9.81 x 0.4 + 800 x 9.81 x 0.15]
= - [53366.4 + 1177.2] = — 54543.6 N/m* = - 5.454 N/cm®. Ans.



DIFFERENTIAL MANOMETERS :Differential manometers
are the devices used for measuring the difference of pressures
between two points in a pipe or in two different pipes.

A differential manometer consists of a U-tube, containing a
heavy liquid, whose two ends are connected to the points,
whose difference of pressure is to be

measured. Most commonly types of differential manometers are

1. U-tube differential manometer and

2. Inverted U-tube differential manometer.

'll

fe— % —>|

(@)Two pipes at different levels
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(a)Two pipes at different levels (b) A and B are at the same level

Fig.2.18 U-tube differential manometers.



Inverted U-tube Differential Manometer. It
consists of an iInverted U-tube, containing a light
liquid. The two ends of the tube are connected to the
points whose difference of pressure is to be measured.
It 1s used for measuring difference of low pressures.

Figure shows an inverted U-tube differential

manometer connected to the two points A and B. Let

the pressure at A Is more than the pressure at B.




Hydrostatic forces on the surfaces

Hydrostatic force (or) Total pressure force
This concept is used for the design of hydraulic structures like dams ,Hydraulic gates, Ships etc

This concept deals with the fluids (i.e., liquids and gases) at rest. This means that there will be no

relative motion between adjacent or neighbouring fluid layers.

change of velocity between two adjacent fluid layers
distance between the layers

The velocity gradient =

d .
= 2% — 0 will be zero

dy Hydrostatic force on the depth of the
The shear stress which is equal to Zero container and surface area for the Given fluid

on the fluid particles will be :
1. Due to pressure of fluid normal to the surface,

2. Due to gravity (or self-weight of fluid particles).



TOTAL PRESSURE AND CENTRE OF PRESSURE:

Total pressure is defined as the force exerted by a static fluid on a surface either plane or curved when the fluid
comes in contact with the surfaces. This force always acts normal to the surface. Centre of pressure is defined as
the point of application of the total pressure on the surface.

There are four cases of submerged surfaces on which the total pressure force and centre of pressure is to be
determined.

The submerged surfaces may be :

1. Vertical plane surface,

2. Horizontal plane surface,

3. Inclined plane surface, and
4

Curved surface.



VERTICAL PLANE SURFACE SUBMERGED IN LIQUID
Consider a plane vertical surface of arbitrary shape immersed in a liquid as shown in

Figure
Let A = Total area of the surface __.F_R'.E_ E.S_ P_ 5 '.:f_(f_E._?_'_:_.L_'S.Lf.'gL._ —
h = Distance of C.G. of the area from free surface of liquid e ey s Tl

G = Centre of gravity of plane surface " ‘ : | A
P = Centre of pressure 4
h* = Distance of centre of pressure from free surface of liquid. v h

dh LT LELE L
T Ge A |
pe [ F"
B

(a) Total Pressure (F): The total pressure on the surface may be determined by dividing the entire surface into a

number of small parallel strips. The force on small strip is then calculated and the total pressure force on the

whole area is calculated by integrating the force on small strip.

Consider a strip of thickness dh and width b at a depth of h from free surface of liquid as shown in Figure



Pressure intensity on the strip, p = pgh
FREE SURFACE OF LIQUID

Area of the strip, dA=b x dh R TR GRS RO S s R (. Y
«—— b A
Total pressure force on strip, dF = p X Area h h
=pgh x b x dh /\\ h*
Y
Total pressure force on the whole surface, dh T AT T TTE
Ge A l
F=de=ngh><bxdh=pgjb><h><dh ! b( >
B

_[bxhxdh: jhxcﬂﬁl

= Moment of surface area about the free surface of liquid
= Area of surface X Distance of C.G. from free surface

=AXh

F = pgAh




(b) Centre of Pressure (h*) : Centre of pressure Is calculated by using the "Principle of
Moments", which states that the moment of the resultant force about an axis is equal to the
sum of moments of the components about the same axis.

The resultant force F is acting at P, at a distance h* from free surface of the liquid as shown In

Figure. FREE SURFACE OF LIQUID
Hence moment of the force F about free surface of the liquid - '3'3'1?'3'3'3'3'3'3'3'3:'—"3'-"—"—"5??3?'
>-— A
Moment of force dF, acting on a strip about free surface of h /\ h
. | -
liquid = dF x h dh ~ 777777777 l
= ¥
{ dF = pgh x b x dh} T Q// s
B

=pgh xbxdhxh



Hydrostatic Force :(Total Pressure Force )

The concept is used to design for Hydraulic Structures ,Hydraulic gates, dams ,

Ships and submarines....etc.
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Hydrostatic force = Net force exerted by the fluid on the body is known as total

pressure force for flat surface in any Orientation

l E & LOF\]'H{l

Centre of pressure (CP) : The point of application of total pressure force is known as

Centre of pressure.it is measured in vertical depth from the free surface

T Fa e ¥
deicn DINTH 3

L lgg = MOI of body about axis parallel to the to
X ' pressure

h =
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Moment of inertia
about an axis passing

Moment of
inertia about

Plane surface C.G. from the Area through C.G. and base (1)
base parallel to base (1)
1. Rectangle
K
|
T_“7G_"_d d bd® bd®
! X=— bd = =
X 2 12 3
' :
le—b—>
2. Triangle
ok bh o o
3 2 36 12
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3. Circle
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Buoyancy and Floatation

* When a body is immersed wholly or partially in a fluid, it is subjected to an upward

force which tends to lift (buoy)it up.

* The tendency of immersed body to be lifted up in the fluid due to an upward force

opposite to action of gravity is known as buoyancy.
« The force tending to lift up the body under such conditions is known as buoyant
force or force of buoyancy or up-thrust.

The magnitude of the buoyant force can be determined by Archimedes’ principle which
states

When a body is immersed in a fluid either wholly or partially, it is buoyed or lifted up

by a force which is equal to the weight of fluid displaced by the body”



Buoyancy and Floatation —
Y Y Watersurfa;e \ 4

i F —
h : 3
Lets consider a body submerged in water as shown in 'l
Y J K B=m,
figure.
The force of buoyancy “resultant upward force or
thrust exerted by fluid on submerged body™ 1s given )
P, = 7{i +1,)
FZ
Fp = 7(h1 +h2)dA_ 7/(’71)‘511’il
F, = y[(h2 )dA] dA=Area of cross-section of element

F, = 7[volume] v= Specific weight of liquid



. F,=v[volume] =Weight of volume of liquid displaced by the body (Archimedes's Principle)

* Force of buoyancy can also be determined as difference of weight of a body in air and in liquid.

Let
W,= weignt of body inair
W= weight of body in licuid
Fe=W,- W,



Center of Buoyancy (B): The point of application of the force of

buoyancy on the body is known as the center of buoyancy.

It is always the center of gravity of the volume of fluid displaced.

Woater surface
v
O CGorG O
® CorB
CG or G= Center of gravity C or B= Centroid of

of body volume of liquid displaced

by body



Types of equilibrium of Floating Bodies

Stable Equilibrium:

If a body returns back to its original position due to internal forces from small angular

displacement, by some external force, then it is said to be in stable equilibrium.

L7 - }”'
s
A ;F B F, m

¢ = centroid of original ¢’ = centroid of new Restoring
displaced volume displaced volume couple

Stable

Note: Center of gravity of the volume (centroid) of fluid displaced is also the center of
buoyancy



Unstable Equilibrium: If the body does not return back to its original position from the
slightly displaced angular displacement and heels farther away, then it is said to be in

unstable equilibrium

¢ = centroid of original ¢’ = centroid of new Overturning
displaced volume displaced volume couple

Unstable



Neutral Equilibrium: If a body, when given a small angular displacement, occupies
new position and remains at rest in this new position, it is said to be in neutral

equilibrium.




Metacentre and Metacentric Height

Center of Buoyancy (B) The point of application of the force of buoyancy on the body

is known as the center of buoyancy

Metacenter (M): The point about which a body in stable equilibrium start to oscillate

when given a small angular displacement is called metacenter.

It may also be defined as point of intersection of
the axis of body passing through center of gravity
(CG or G) and original center of buoyancy (B) and

a vertical line passing through the center of

buoyancy (B’) of tilted position of body.

______




Metacentric height (GM): The distance
between the center of gravity (G) of floating >
body and the metacenter (M) is called

metacentric height. (i.e., distance GM shown in

fig)

GM=BM-BG




Condition of Stability

For Stable Equilibrium

Position of metacenter (M) is above than center of gravity (G)
For Unstable Equilibrium

Position of metacenter (M) is below than center of gravity (G)
For Neutral Equilibrium

Position of metacenter (M) coincides center of gravity (G)

)

Overturning moment

(\

Restoring moment




Determination of Metacentric height

The metacentric height may be determined by the following two methods

1. Analytical method 2. Experimental method




» In Figure shown AC is the
original waterline plane and B
the center of buoyancy in the
equilibrium position.

» When the vessel is tilted
through small angle 0, the
center of buoyancy will move to

B’ as a result of the alteration in
the shape of displaced fluid.

A’C' is the waterline plane in
the displaced position.




Kinematics of fluid



Kinematics of flow

INTRODUCTION

Kinematics is defined as that branch of science which deals with motion of particles without
considering the forces causing the motion. The velocity at any point in a flow field at any time is
studied in this branch of fluid mechanics. Once the velocity is known, then the pressure distribution
and hence forces acting on the fluid can be determined. In this chapter, the methods of determining

velocity and acceleration are discussed.

Motion Characteristics:
* \elocity

« Acceleration

* Pressure

* Density



METHODS OF DESCRIBING FLUID MOTION
The fluid motion is described by two methods.
They are —(i) Lagrangian Method, and
(i1) Eulerian Method.
In the Lagrangian method, a single fluid particle is followed during its motion and its velocity,
acceleration, density, etc., are described.
In case of Eulerian method, the velocity, acceleration, pressure, density etc., are described at a

point in flow field. The Eulerian method is commonly used in fluid mechanics.



Fluid motion is described by two methods.

Methods:

Lagrangian Method - Describes a defined mass (position,
velocity, acceleration, pressure, temperature etc.,) as
functions of time.

Example:

Track the location of a migrating bird

Eulerian Method - Describes a flow field (velocity,
acceleration, pressure, temperature etc.,) as functions of
position and time.

Example:

Count the birds passing through a particular location

-
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Rising at 2 degrees per hour!
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 In the Eulerian approach, the fluid motion at all points in the flow field is determined by applying

the laws of mechanics at all fixed stations.

« This is considerably easier than the Lagrangian approach and is followed in the study of Fluid
Mechanics.

INITIAL
TIME

P~

/
(b) EVLERIAN APPROACH

1) LAGRANGIAN APPROACH
(SIU[%OF EACHPARTICLEWITHTIME)  (STUDY ATFIXED STATIONS IN SPACE}



Difference Between Lagrangian and Eulerian Description

@ Imagine a person standing beside a river measuring its properties.

In the Lagrangian approach, he throws in a probe that moves downstream with the water.

In the Eulerian approach, he anchors the probe at a fixed location in the water.

« Experimental measurements are more suitable to the Eulerian Description.

@ Equations of motion of fluid flow in Lagrangian description are well defined (Newtons'

second law), but needs to be carefully derived for the Eulerian description



Lagrangian method

* In this method, a single fluid particle is chosen and followed during its
motion,

* Its velocity, acceleration, density etc, is described with respect to its
location in space and time from a fixed position at the start of the
motion,

* The position of the fluid particle (x,y,z) at any time t with respect to
its position (a,b,c) at time t=0 is given as,

x=fl(a,b,c,t); v=R2(ab,ct); z=B(,b,ct)

Then, velocity is given by

u=dx/dt jv=dy/dt; w=dz/dt

a_=du/dt =dx/d* = d"y/ dt’;a=d%/ dr’

Resultant velocity=?

Resultant acceleration=7
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Eulerian method
 In this method, a point or section is chosen in the flow field
 |ts velocity, acceleration, density etc. are observed at that point
* [tisa commonly used method because of mathematical simplicity Let u, v, and w be
the components of resultant velocity in X, y and z axis respectively. The velocity
components vary along space and time.
u=f1(x,y,z,t);
v=f2(X,y,z,1);
w=f3(X,y,z,t)
Then, resultant velocity is given by

Resultant velocity="?



Flow Visualization is the Visual Examination of Flow-Field Features.
It is important for both physical experiments and numerical solutions.
Description of Flow Patterns:

1. Stream Lines

2. Path Lines

3. Streak Lines

4., Stream Tube



> Path line: It Is trace made by single particle over a period
of time.

» Streamline show the mean direction of a number of
particles at the same instance of time.

» Character of Streamline

1.Streamlines can not cross each other. (otherwise, the cross
point will have two tangential lines.)

2. Streamline can't be a folding line, but a smooth curve.

3. Streamline cluster density reflects the magnitude of velocity.

(Dense streamlines mean large velocity: while sparse

streamlines mean small velocity.)

Flasd particle al 1=,

J -
f ’ Y

" Pathiine e Y

Flud particle atr=1_

|
Flukd panticle ot some
mlgrmediate Lime

Flow around cylindrical object



» A Streakline is the locus of fluid particles that
have passed sequentially through a prescribed point
In the flow.

It is an instantaneous picture of the position of all
particles in flow that have passed through a given
point.

« Streamtube Is an imaginary tube whose boundary
consists of streamlines.

* The volume flow rate must be the same for all

cross sections of the stream tube.




e s N p—

P . ——n
- & - -~ B gl
pa— - oy ~—
s Py et U
- .- . e s
g AT s g sy e o Ny oL
SENRPRNEN. . T -
- S -y
" - s dual
—- b g -
g s Ppmprt+ 48 y - -  N——.
N i a—y bt o P : -
o dan i .
. :
pyh-ele R S : T — .
— e
- B e & Lame -—
RGO ANENE By p E
Y S . L S
P e O A
- M o TP
* AT i L SR
— > bod LAl TR -
cdahay el o o . .dm-.,"‘ BPY A .
® M
-0k +
R e B v -l
- " i
- "
o L gt e, g O PP
- - - raalat i ] i=e -
- -l y - —
ot vn v Y o
o S G & - ———
) - e IR o
e it
vt ey Sl v e et g pan
¢ - — Ty b
- -
e P - P et
T - e
~ iy — -

. P b s ———te g e .
- vl N it i o tibt G vt - o ~
- . - - .- —— o

— e e i ——
G - - P - { ey
VA ol
WP g I s TR— P
. o
R -
maan R . * o S -
L . ' -~
L
S g Ay iy
TG el
— . T n (2 S s
— ~ ' 2
~-
- PP s e bt S e SR
- -y L
Ml sope Am g W
P i
—_— . v L
.,
M Ao L I L &y
b —_—— -—en - 4 - §—
- S a—— -
" -
i el SR
vy S N e o o i, W T
v . . Lo eraipyh
a P g
- - —— TR o \

"B s ot 2 ]






Types of Fluid Flow
Steady and Unsteady Flow

Uniform and Non-Uniform Flow
Laminar and Turbulent Flow
Rotational and Irrotational Flow
Compressible and Incompressible Flow

Ideal and Real Flow

N o o Bk~ w o=

One, Two and Three Dimensional Flow



Steady flow is that type of flow in which fluid parameters (velocity, pressure, density etc.) at any point
in the flow field do not change with time.

This means that the fluid particles passing through a fixed point have the same flow parameters like
velocity, pressure, surface tension etc.

The parameters may be different at the different cross-section of the flow passage.
3.0,
(), 2.0 G a’ s Yo &0 ()’ boo Voo 0
where (Xy, Yoo 2o) 18 @ fixed point in fluid field.

Unsteady flow is that type of flow in which fluid parameters (velocity,

pressure, density etc.) at a point changes with time.

LAY I
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Steady flow Quasi-steady flow Unsteady-steady flow

A flow is said to be quasi steady if temporal variations

at a spatial location are much smaller (they would be

zero If the flow was steady) compared to spatial

variations for any quantity. "
Changing in time






Steady flow

TT FTF

Time=t Time=¢ Time=t Time=t,

Unsteady flow




Uniform and Non-uniform Flows.
Uniform flow is defined as that type of flow in which the velocity at any given time does not

change with respect to space (i.e., length of direction of the flow). Mathematically, for uniform

/
(.‘2‘_) -0
as I = constani

where  dV = Change of velocity
ds = Length of flow in the direction §.

flow

Non-uniform flow is that type of flow in which the velocity at any given time changes with

respect to space. Thus, mathematically, for non-uniform flow

I..I‘
(&_ ] % ().
a“ | = gondani
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Steady uniform flow

Steady non-uniform flow

////,

Three dimensional flow



Laminar flow Is also called streamline or viscous flow. This type of flow occurs in
smooth pipes having the low velocity of flow. It also occurs in liguids having high
VISCOSIty.

Turbulent flow Is defined as that type of flow in which each fluid particle does not
have a definite path and the paths of individual particles cross each other.

In other words, it Is the flow in which fluid particles move in a zigzag path

When a fluid is flowing in a pipe, the type of flow is determined by a non-
dimensional number, called Reynold's number.

For laminar flow, Reynold number <2000

For turbulent flow Reynold number > 4000



Uniform and Non-Uniform Flow
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Non-uniform Mow

Flow direction

WThe COMET Program

Boulder Creek. Boulder, CO
Photo by Richard Koehlet




laminar flow
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Laminar

Turbulent
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turbulent flow
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The Reynolds number correlates well with flow characteristics.

pV. . D

avg

C

mEr

Re > 4000
turbulent (unpredictable, rapid mixing)

2300 < Re <4000
transitional (turbulent outbursts)

Re <2300
laminar (predictable, slow mixing)



Flow

*esee e
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Low discharge

Flow
—>

Medium discharge

High discharge

Laminar Flow: every fluid molecule followed a straight

path that was parallel to the boundaries of the tube.

Transitional Flow: every fluid molecule followed wavy
but parallel path that was not parallel to the boundaries of

the tube.

Turbulent Flow: Every fluid molecule followed

very complex path that led to a mixing of the dye.



Laminar blood flow

Vessel wall E——
Flow
Turbulent blood flow

Laminar  High  Turbulent Laminar
velocity



compressible flow: The flow in which the density of fluid changes, due to pressure and temperature
variations, from point to point during the flow is called compressible flow.
In other words, it is the flow in which the density of a fluid is not constant during the flow.
Mathematically, for compressible flow,

p # constant
Incompressible flow :The flow in which the density of fluid does not change during the flow is called
Incompressible flow. In other words, it is the flow in which the density of a fluid is constant during the
flow.
Mathematically, for incompressible flow,

p = constant
Liquids are generally incompressible which means that pressure and temperature changes have a very

little effect on their volume. Gases are compressible fluids.



Incompressible fluid Compressible fluid



[Gascs are compmssiblc.} (Liquids are not comprcssiblc.]

Liquid

Gas



Compressible Flow




Rotational flow is that type of flow in which fluid particles also rotate about their own axes
while flowing along a streamline.
Irrotational flow is that type of flow in which fluid particles do not rotate about their own axes

while flowing.

Rotational flow Irrotational flow



Fluid particles not rotating

Wall Fluid particles rotating



VR N N

Rotational flows Irrotational flows




« An ideal flow Is the flow of a non-viscous fluid. In the ideal flow, no shear stress exists
between two adjacent layers or between the fluid layer and boundary, only normal stresses
can exist in ideal flows.

« The flow of real (viscous) fluids is called real flow. In real flow, shear stress exists between

to adjacent fluid layers. These stresses oppose the sliding of one layer over another

Real fluid flows implies friction effects. Ideal fluid flow is hypothetical;
it assumes no fricton,

TEEEEREEYEYY
TEEEYTY Y

Pipe Ideal tlow Real flow

Velodity distnbution of pipe fow



Friction =0
\deal Flow (p =0)
Energy loss =0

Real

Friction # 0
Real Fiow ( p #0)
Energy loss #0



One dimensional flow is the flow in which parameters (velocity, pressure, density, viscosity
and temperature) vary only in one direction and the flow Is a function of

only one co-ordinate Axis and time. The flow field is represented by streamlines

which are straight and parallel

mathematically, for one-dimensional flow
u=flx),v=0and w=0

LTI VIIIIIIIIIIIA
- o 773 1/f -

- ' - -
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o , -
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(8) Flow between paraliel plates (b) incompressible flow in a duct

Illustration of one dimensional flow



Although in general all fluids flow three-dimensionally, with pressures and velocities and other
flow properties varying in all directions, in many cases the greatest changes only occur in two

directions or even only in one. In these cases changes in the other direction can be effectively

Ignored making analysis much more simple.

Flow is one dimensional if the flow parameters (such as velocity, pressure, depth etc.) at a given

Instant in time only vary in the direction of flow and not across the cross-section

Mean
Water surface v velocity

——"1 —

Longitudinal section of rectangular channel ¢~ e artion Velocity profile




Two-dimensional flow is the flow in which fluid parameters vary along two directions
and the flow is the function of two rectangular space coordinates (x and y- axis) and
time.

The flow field is represented by streamlines which are curves. mathematically for two-

dimensional flow
u=filx,y),v=Lx,y)and w=0.

/11T 7777778777777
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(a) Viscous flow between paraliel plates (b) Flow over a spillway

Hlustration of two dimensional flou



Three-dimensional flow is the flow in which flow parameters change in all the three
directions and the flow is the functions of three mutually perpendicular co-ordinate Axis (X,

y, z-axis) and time. The streamlines are space curves

u=fx,y2,v= fl‘"‘ y,2)and w = f‘(.l'. Y. 2).

é :q %
Viscous flow

in a duct (three
dimensional flow)




» Flow is two-dimensional if it can be assumed that the
flow parameters vary in the direction of flow and in one

direction at right angles to this direction

Flow is three-dimensional if the flow parameters vary in all

three directions of flow

Three-dimensional flow in stilling basin



Rate of Flow or Flow Rate or Discharge:

Quantity of fluid passing through any section in a unit time.

Unit: m3/sec
Types:
1. VWolume Flow Rate = Volume of fluid / Time
=Q or AV
2. Mass Flow Rate = Mass of fluid / Time = p x Volume / Time =

p Q or PAV

3. Weigh Flow Rate = Weight of fluid / Time = (pg x Volume) / Time
= pgQ or pgAV Where, Q = Area x Velocity



Continuity \
» Matter cannot be created or destroyed wan n:.'.

-(it 1s simply changed in to a different form of matter).
» This principle is know as the conservation of mass and we use
Hass ewawl
It in the analysis of flowing fluids.
o _ _ _ An arbitranily shaped control volume

» The principle is applied to fixed volumes, known as control

volumes shown in figure:
» For any control volume the principle of conservation of mass

says

Mass entering per unit time - Mass leaving per unit time =

Increase of mass in the control volume per unit time



Continuity Equation

» For steady flow there is no increase in the mass within the control
volume, so Mass entering per unit time = Mass leaving per unit time

» Derivation:
Lets consider a stream tube.
p1. V; and A, are mass density. velocity and cross-sectional area at
section 1. Similarly, p,. V, and A, are mass density, velocity and cross-

sectional area at section 2.

dM,,)

dt
dM,,

di

M-M,=

-

PAY, - pAY, =

A stream tube

“!; - pl/\l"l
M, = p.AV.



+ For steady flow condition (pr )/ds =0
PAY, - PAY, =0=p AV = pAY,
M=p AV, =pAY,

+ Hence, for stead flow condition, mass flow rate at section |= mass
flow rate at section 2.1.e., mass flow rate is constant.

v Similarly G = p gAY = pAy,

v Assuming incompressible fluid, 2, =p,=p

Contingi lA'V‘:A:V’ - ¢ =0, - 0=0,=0,=0,

i l“erdore. according to mass conservation for steady flow of
incompressble fluids volume flow rate remains same from section
to section,




Problem 5.1  The diameters of a pipe at the sections | and 2 are 10 cm and 15 cm respectively, Find
the discharge through the pipe if the velocity of water flowing through the pipe at section | is
5 m/s. Determine also the velocity at section 2,

Solution. Given : 2
At section 1, D,=10em=01m ® .
PP R Y il
A, 3-4- (D)) z-; (1)"=0007854 m* __ Ip=10em D;=15¢m
V=S mis g a T
At section 2, Dy=15cm=0.15m s Sebec [
k; :14‘- (15)* = 0.01767 m? Fig. 52
() Discharge through pipe is given by equation (5.1)
or Q=AxV,
= 0.007854 x § = 0.03927 m's. Ans,
Using equation (5.3), we have A, V, = A,V,
(if) . Vy= B o 5.0 = 2.22 ms, Ans.

A 001767



Problem 52 A 30 cm diameter pipe, conveying water, branches into two pipes of diameters
20 ¢cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the
discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm

diameter pipe is 2 m/s,

D, =30 em = 030 m
A.-%D.’--:-x.l’-aom&n’

V|'2.$m
Dy=20cm=020m

A} 3':' (.2)’ 3‘:' XAd= 0-03'4 'l’o

v,.zm
Di=15Sem=015m

A, -f (18 -; %0228 = 001767 m*

Find (1) Discharge in pipe | or Q,
(1) Velocity in pipe of dia. 15 cmor V,

Solution. Given :




Let 0, Q, and Q, arc discharges in pipe 1, 2 and 3 respectively.
Then according to continuity equation

Q=0+
(i) The discharge Q, in pipe 1 is given by

Q,= AV, = 007068 x 2.5 m"s = 0.1767 m*s. Ans.
(if) Value of V,

0,= A,V = 0.0314 x 2.0 = 00628 m'/s
Substituting the values of @, and Q, in equation (1)

0.1767 = 0.0628 + Q,

. Qy = 0.1767 - 0,0628 = 0.1139 m*s
But Qy=Ayx Vy=001767 x Vy or 0.1139 = 0.01767 x V,

Vy= SAL 6.44 m/s. Ans.
001767

W)



[MCQ-2]

.33,

In the pipe network as shown in figure, all pipes have the same cross section arcas and
can be assumed to have the same fnction factor. The pipes connecting poants W, N and
S with the joant J have an egual length L The pipe connecting poinis J and E has a
length 10L. The pressures at the ends N, E and 5 arc equal. The flow rate i the pipe
connccting W oand J s Q. Assume that the flmd flow 15 steady, incompressible, and the
pressure losses at the pipe entrance and the junction are neghgible, Consider the
following statecments.

I The flow rate 1n pape connecting J & E 1= % :
[I. The pressure difference between J & N oi1s cgual to the pressure differcnce
between 1 & E.

Flow rate

T°I®

L

Q3

— |

| (1] i
. — s |E
[
Mol o scale

-



Sol.

(d)

h+e+:=0 ... .0)

h=>0 IR |1}

From equation (1) and {n)

2 +0e=0Q............[A) W

Y —

P;— Py=P;— Py Q=3

|

Now
PR PR

{h,_}m = “‘L};

L) fLg
121D 121D

LO; =10LQ;
Q, =100,

From equation (A)
20,+Q,=0Q
210Q,+Q, =Q

o Q
Q= 1+ 2410

0, =0.136 Q)

S0 statement 1 15 wrong and statement 2 15 correct

,FJ_FH_PJ_PI-: “ L

:—ﬁl
-

L.



Velocity of Fluid Particle
Velocity of a fluid along any direction can be defined as the rate of change

of displacement of the fluid along that direction

Resultant velocity V ul4 '-'r] + wk

V=W +v 4w




Acceleration of Fluid Particle
 Acceleration of a fluid element along any direction can be defined as the rate of

change of velocity of the fluid along that direction.

dealeajeak

Where ay, a,, a, are the acceleration vectors in X, Y and Z directions,

respectively.




ya, a and 3, are termed as the total acceleration on respective directions.

» Total acceleration has two components - w.rt time and wrt space and can be
expressed in terms of u, v and w and this can be represented as:

T I
4, =i —tl—tV—tW—
58(3 ox
v v v v
4, =i—t—tV—tW—
oAy &y @
Lol awaw
a, il e | oo 7\ S i Areeny
L.@U | X ay azj
/ T
local acceleration
or
temporal acceleration convective acceleration

» Euler equations are applicable to compressible, incompressible, non-viscous in steady
or unsteady state of flow.



Let Vis the resultant velocity at any point in a fluid flow. Let u, v and w are its component in x, y and

z directions. The velocity components are functions of space-co-ordinates and time. Mathematically,
the velocity components are given as

“ =f|(xc yo & ‘)
v=Lln )
W =f3(xc )‘. & ')

and Resultant velocity, — V=uwi+vj+wk= Ju’ v 4w’

Leta,, a and a, are the total acceleration in x, y and z directions respectively. Then by the chain
rule of differentiation, we have

du du dx am du dz du

a —_—z = — s — —_—
U Y dl g dt a:
But £=u.ﬂ-vami—z==w
dtdt dt

a,--dﬁsuﬁ‘-ﬂ'ia-"wwﬁi»g‘i‘\

@ %y (X Local Acceleration

Similarly, ay = %—:-= " % + V%+ W % +EF «(5.6)




For steady flow, aa:,

or

0, where V is resultant velocity
du &v dw
=0and—=0
o a: ot
Hence acceleration in x, y and z directions becomes
a duxu8u+v8u+w_6l"
Ydt 0 dy &
a_ds'_u8v+v9v+w_a_v
a0y &
a_ﬂ_“aw+vbw+w8w
Tdt o x dy dr
A=aitaj+ak

Acceleration vector

= a,2 +a,2 -Hz:2 .

«(3.7)

«(5.8)



Problem 5.6 The velocity vector in a fluid flow is given
V=40 - 105y] + 21k,
Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = |.

Solution. The velocity components u, v and w are u = 4, v =~ 107 y, w= 2
For the point (2, 1, 3), we have x=2,y=land z= 3 attime 1 = |.
Hence velocity components at (2, 1, 3) are
u=4x (2)’= 32 units
v==10(2)%(1) = - 40 units
w=2x|=2 units
Velocity vector Vat (2, 1, 3) = 32i - 405 + 2k

or Resultant velocity = yu® + v* +w?

=32 +(-40)" +2* = 1024+ 1600+4 = 51.26 units. Ans.



Acceleration is given by equation (5.6)
a- o du

a' w—*—

axby ot
X

d

0,835#35;'0'!\!5;‘#6’
az= U—'H'—i'l"ali'ﬁ
‘ ot

o dy o2

Now from velocity components, we have

o v ou ou
3-;:!2:’ ay::() E:Olﬂd-a- =0

dv dv
5;--2(1:)';--!0:’ —so-a-ao



Substituting the values, the acceleration components at (2, 1, 3) at time £ = | are
a,= 4 (12%) + (- 102y) (0) + 2 % (0) + 0
= 48¢° = 48 x (2)° = 48 x 32 = 1536 units
a,= 4 (- 2009) + (= 106%y) (= 106) + 21 (0) + 0
= - 80x'y + 100x"y
== 80 (2)* (1) + 100 (2)* x 1 = = 1280 + 1600 = 320 units.
a,= 4 (0) + (= 105%y) (0) + (21) (0) + 2.1 = 2.0 units
', Acceleration is A=ai+aj+ak= 15361 + 320§ + 2k, Ans.

Resultant A=y(1536)" +(320)° +(2)° units

=,/2359296+ 102400 + 4 = 1568.9 units. Ans,



Continuity Equation in Three Dimension :
When fluid flow through a full pipe, the volume of fluid entering in to the pipe must be

equal to the volume of the fluid leaving the pipe, even if the diameter of the pipe vary.

Therefore we can define the continuity equation as the equation based on the principle of

conservation of mass.

Therefore, for a flowing fluid through the pipe at every cross-section, the quantity of fluid

per second will be constant.



Consider a fluid clement of lengths dx, dy and dz in the direction of x, y and 2. Let w, v and w are the
inlet velocity components in x, y and 2 directions respectively. Mass of fluid entering the face ABCD
per second

= p x Velocity in x-direction x Area of ABCD
=pxXux(dyxds)

mnmmomuldluvh;metmlim}!mm-pad)dﬂ-d—

dr
', Gain of mass in x-direction
= Mass through ABCD ~ Mass through EFGH per second

-pudm-pudm-%mmm

(pu dydz) dx

---a- (pu dydz) dx
dx Z
&= 'a'a; (pu) dx dyds (% dvdz is constant )
Similarly, the net gain of mass in y-direction 0 y ;
J &z
= = — (pv) ddydz o < g
dy F
dy
and in z-direction B - -a-(pw)m dx o
& Y Fig. 5.6

Net gain of masses = -[-;; (pu) + %(pvh % (pw)] ddydz



Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit

time in the fluid element must be equal to lbcﬁc of increase of mass of Tluid in the cEmenq But mass

of fluid in the element is p. dx. dy. dz and its rate of increase with time ls-g; (p dx. dy. dz) or

&
y dx dy dy

Equating the two expressions,
0,98 _%
. -[-a;(pu)+ 2 ) 2 o = 2. v

or %4- -ai-(pu)+ %(pv) + -éza-(pw) = () [Cancelling dx.dy.dz from both sides] ...(5.34)



Equation (5.34) is the continuity equation in cartesian co-ordinates in its most general form. This
¢quation is applicable to :
(1) Steady and unsteady flow,
(fi) Uniform and non-uniform flow, and
(it/) Compressible and incompressible fluids.

For steady flow.%% = () and hence equation (5.34) becomes as
d d J
y (pu) + » (pv) + g(pw) =) .(5.3B)
If the fluid is incompressible, then p is constant and the above equation becomes as
du dv ow
i o i £ s (54
dx dy 0z Gl

Equation (5.4) is the continuity equation in three-dimensions. For a two-dimensional flow, the com-
ponent w = ) and hence continuity equation becomes as

i‘bﬁ: -0, .(55)

d oy



Problem 5.7  The following cases represent the two velocity components, determine the third com-
ponent of velocity such that they satisfy the continuity equation :

(i) u=xz+y'+z’:v=xy’-yz?{»xy

(i) v= 2)". W= 2X)V%

Solution, The continuity equation for incompressible fluid is given by equation (5.4) as

ﬂ ?.Y. 22.-.0
dx dy o2
Case I, u=r 4y 4 ?:2;
X
v=xy’-yz2+.ry iv-:‘-?.ry--zzu
dy
oy
Substituting the values of & and g in continuity equation.
1t+1ry-z2+x+ﬁ=0
dz
ow 2
or —=-3r-2y+Cordws(-3x-2y+ 2) o2

dz



Integration of both sides gives [dw = [(~3x - 2xy + 2 ) dz

)
or W= [-3:: -2+ 53-] + Constant of integration,

where constant of integration cannot be a function of z. But it can be a function of x and y that is f(x, y).

)
W =(-3n- nyu-f’-] +1(x, ¥). Ans.

3 ai'
C&C“. V-'-'»zy. o b -—34y
oy
ow
w=dyr % Lxy
dv . dw
Substituting the values of 5; and 3; in continuity equation, we get
2"44)%2()':0
dx
ou
or 5;8-@-21?0(“!(-4)'-2!)')4!

2
Integrating, we get u=-4xy-2y% #[(y,2) = =dxy = Xy + 1(y, 2). Ans,



Phreatic Line is a seepage line separating saturated and unsaturated zones

| m/, \ |

mmm«mum |

1 F.ieﬂ filter
Nf=35
Flow Net for an Earth Dam




Stream Function and

Velocity Potential Function
e e e T i

5.8.1 Velocity Potential Function. It is defined as a scalar function of space and time such
that its negative derivative with respect to any direction gives the fluid velocity in that direction. It is
defined by ¢ (Phi). Mathematically, the velocity, potential is defined as ¢ = f(x, v, 2) for steady flow
such that

__ %
o
vz-%;; | (59

where «, v and w are the components of velocity in x, y and z directions respectively,



Cou v Bw_

The continuity equation for an incompressible steady flow is — + — 4 — =
dx dy o

Substituting the values of «, v and w from equation (5.9), we get
df H) 9f % i(_ﬁ)-
3x( Bx)+ 9y( 3y]+3z T

+ort—r =0, (5.10)

0.

or

Equation (5.10) is a Laplace equation.

2
For two-dimension case, equation (5.10) reduces to 09,99 = (), w(311)

dr’ +W

If any value of ¢ that satisfies the Laplace equation, will correspond to some case of fluid flow.



Properties of the Potential Function. The rotational components® are given by
(O au)

m_l
t" 9

\a.l' ay

,,l'.a_“-i"_)
o 2\dr o
ey
o

dy &

®



Substituting the values, of u, v and w from equation (5.9) in the above rotational components, we

get
oo lf3(-B).2 AU T
Co2fae dy) oyl ax)| 2 oxdy dydx
NSIETRN TR WO
2o\ ) o 31/--2_ dedx  dxdz.
nd 0 =1’9.(-92)-_9.(-2€;1’_.a_’9.+9_’o_‘
Co2|y\ o) e dy)| 2| oy oy,

2o o6 e %
If ¢ is a continuous function, then 3 M Sy oxdr

% 0,=0=0=0

When rotational components are zero, the flow is called irrotational. Hence the properties of the
potential function are :

I If velocity potential (9) exists, the flow should be irrotational.

2. 1f velocity potential (¢) satisfies the Laplace equation, it represents the possible steady incom-
pressible irrotational flow.

, ele,



Problem 5.11  The velocity potential function is given by ¢ = 5 (¥ = y°).
Calculate the velocity components at the point (4, 5).

Solution. 0=5(-))
%’i = |0x
% == 10y.
But velocity components u and v are given by equation (5.9) as
U= -g’—; =~ 10x
v=-%}=-(- [0y) = 10y

The velocity components at the point (4, 5), ie., atx=4,y=5
U=~ 10x4=~40 units, Ans.
v=10x 5 = 50 units. Ans,



5.8.2 Stream Function. Itisdefined as the scalar function of space and time, such that its partial
derivative with respect to any direction gives the velocity component at right angles to that direction. It
is denoted by y (Psi) and defined only for two-dimensional flow. Mathematically, for steady flow it is
defined as W = f(x, y) such that

dy
— =
o r +(5.12)
and B_V =i
dy |
The velocity components in cylindrical polar co-ordinalcs in terms of stream function are given as
| dy
= —— and --— (5.12A
LT e ar G

where « = radial velocity and u; = tangential velocity

The continuity equation for two-dimensional flow is E‘i +— i = 0.

dx dy



Substituting the values of u and v from equation (5.12), we get

A o), 8(8v) R 82\|r
Bx( ayJ dy \ ox vioE= away dxdy o

Hence existence of y means a possible case of fluid flow. The flow may be rotational or irrotational.

The rotational component o, is given by @, = %(ﬂ - a—“)
X
Substituting the values of u and v from equation (5.12) in the above rotational component, we get
- _f’_(iv_]-i )| Loy oy
“afaxlax) oyl oy)| 2| 3y

0’y o
ox’ a-

For irrotational flow, ®, = 0. Hence above equation becomes as—-

which is Laplace equation for .

The properties of stream function () are :

I. If stream function () exists, it is a possible case of fluid flow which may be rotational or
irrotational.

2. If stream function () satisfies the Laplace equation, it is a possible case of an irrotational flow.



5.8.6 Relation between Stream Function and Velocity Potential Function

From equation (5.9),

we have

From equation (5.12), we have u =

Thus, we have

Hence

and

do

==-—and v= -—

ox

dy

dy

and v = —

«(5.15)



Problem 5.12 A stream function is given by y = 5x - 6y.
Calculate the velocity components and also magnitude and direction of the resultant velocity at any

point.
Solution. W = 5x -6y
ﬂ =5 and ﬂ =-0.
ox dy

But the velocity components « and v in terms of stream function are given by equation (5.12) as

u= -ﬂ=-(-6)=6unltslsec.Ans.

dy
v= iw— = § units/sec. Ans
ox
Resultant velocity =\[u2 +vi= J62 +5° = J36 +25 =461 = 7.81 unit/sec
Direction is given by, tan 0 = b =% =(.833
"

B=tan"' .833 = 39° 48", Ans.



Kinematics of flow



Kinematics of flow

INTRODUCTION

Kinematics is defined as that branch of science which deals with motion of particles without
considering the forces causing the motion. The velocity at any point in a flow field at any time is
studied in this branch of fluid mechanics. Once the velocity is known, then the pressure distribution
and hence forces acting on the fluid can be determined. In this chapter, the methods of determining

velocity and acceleration are discussed.

Motion Characteristics:
* \elocity

« Acceleration

* Pressure

* Density



METHODS OF DESCRIBING FLUID MOTION
The fluid motion is described by two methods.
They are —(i) Lagrangian Method, and
(i1) Eulerian Method.
In the Lagrangian method, a single fluid particle is followed during its motion and its velocity,
acceleration, density, etc., are described.
In case of Eulerian method, the velocity, acceleration, pressure, density etc., are described at a

point in flow field. The Eulerian method is commonly used in fluid mechanics.



Fluid motion is described by two methods.

Methods:

Lagrangian Method - Describes a defined mass (position,
velocity, acceleration, pressure, temperature etc.,) as
functions of time.

Example:

Track the location of a migrating bird

Eulerian Method - Describes a flow field (velocity,
acceleration, pressure, temperature etc.,) as functions of
position and time.

Example:

Count the birds passing through a particular location

-

Ui

pix y. 2t



Rising at 2 degrees per hour!
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 In the Eulerian approach, the fluid motion at all points in the flow field is determined by applying

the laws of mechanics at all fixed stations.

« This is considerably easier than the Lagrangian approach and is followed in the study of Fluid
Mechanics.

INITIAL
TIME

P~

/
(b) EVLERIAN APPROACH

1) LAGRANGIAN APPROACH
(SIU[%OF EACHPARTICLEWITHTIME)  (STUDY ATFIXED STATIONS IN SPACE}



Difference Between Lagrangian and Eulerian Description

@ Imagine a person standing beside a river measuring its properties.

In the Lagrangian approach, he throws in a probe that moves downstream with the water.

In the Eulerian approach, he anchors the probe at a fixed location in the water.

« Experimental measurements are more suitable to the Eulerian Description.

@ Equations of motion of fluid flow in Lagrangian description are well defined (Newtons'

second law), but needs to be carefully derived for the Eulerian description



Lagrangian method

* In this method, a single fluid particle is chosen and followed during its
motion,

* Its velocity, acceleration, density etc, is described with respect to its
location in space and time from a fixed position at the start of the
motion,

* The position of the fluid particle (x,y,z) at any time t with respect to
its position (a,b,c) at time t=0 is given as,

x=fl(a,b,c,t); v=R2(ab,ct); z=B(,b,ct)

Then, velocity is given by

u=dx/dt jv=dy/dt; w=dz/dt

a_=du/dt =dx/d* = d"y/ dt’;a=d%/ dr’

Resultant velocity=?

Resultant acceleration=7



' “"f:!I:‘."'
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Eulerian method
 In this method, a point or section is chosen in the flow field
 |ts velocity, acceleration, density etc. are observed at that point
* [tisa commonly used method because of mathematical simplicity Let u, v, and w be
the components of resultant velocity in X, y and z axis respectively. The velocity
components vary along space and time.
u=f1(x,y,z,t);
v=f2(X,y,z,1);
w=f3(X,y,z,t)
Then, resultant velocity is given by

Resultant velocity="?



Flow Visualization is the Visual Examination of Flow-Field Features.
It is important for both physical experiments and numerical solutions.
Description of Flow Patterns:

1. Stream Lines

2. Path Lines

3. Streak Lines

4., Stream Tube



> Path line: It Is trace made by single particle over a period
of time.

» Streamline show the mean direction of a number of
particles at the same instance of time.

» Character of Streamline

1.Streamlines can not cross each other. (otherwise, the cross
point will have two tangential lines.)

2. Streamline can't be a folding line, but a smooth curve.

3. Streamline cluster density reflects the magnitude of velocity.

(Dense streamlines mean large velocity: while sparse

streamlines mean small velocity.)

Flasd particle al 1=,

J -
f ’ Y

" Pathiine e Y

Flud particle atr=1_

|
Flukd panticle ot some
mlgrmediate Lime

Flow around cylindrical object



» A Streakline is the locus of fluid particles that
have passed sequentially through a prescribed point
In the flow.

It is an instantaneous picture of the position of all
particles in flow that have passed through a given
point.

« Streamtube Is an imaginary tube whose boundary
consists of streamlines.

* The volume flow rate must be the same for all

cross sections of the stream tube.
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Types of Fluid Flow
Steady and Unsteady Flow

Uniform and Non-Uniform Flow
Laminar and Turbulent Flow
Rotational and Irrotational Flow
Compressible and Incompressible Flow

Ideal and Real Flow

N o o Bk~ w o=

One, Two and Three Dimensional Flow



Steady flow is that type of flow in which fluid parameters (velocity, pressure, density etc.) at any point
in the flow field do not change with time.

This means that the fluid particles passing through a fixed point have the same flow parameters like
velocity, pressure, surface tension etc.

The parameters may be different at the different cross-section of the flow passage.
3.0,
(), 2.0 G a’ s Yo &0 ()’ boo Voo 0
where (Xy, Yoo 2o) 18 @ fixed point in fluid field.

Unsteady flow is that type of flow in which fluid parameters (velocity,

pressure, density etc.) at a point changes with time.

LAY I
ot k;.\q,;l:o' ot e # () elc.

o' ™



Steady flow Quasi-steady flow Unsteady-steady flow

A flow is said to be quasi steady if temporal variations

at a spatial location are much smaller (they would be

zero If the flow was steady) compared to spatial

variations for any quantity. "
Changing in time






Steady flow

TT FTF

Time=t Time=¢ Time=t Time=t,

Unsteady flow




Uniform and Non-uniform Flows.
Uniform flow is defined as that type of flow in which the velocity at any given time does not

change with respect to space (i.e., length of direction of the flow). Mathematically, for uniform

/
(.‘2‘_) -0
as I = constani

where  dV = Change of velocity
ds = Length of flow in the direction §.

flow

Non-uniform flow is that type of flow in which the velocity at any given time changes with

respect to space. Thus, mathematically, for non-uniform flow

I..I‘
(&_ ] % ().
a“ | = gondani
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Steady uniform flow

Steady non-uniform flow

////,

Three dimensional flow



Laminar flow Is also called streamline or viscous flow. This type of flow occurs in
smooth pipes having the low velocity of flow. It also occurs in liguids having high
VISCOSIty.

Turbulent flow Is defined as that type of flow in which each fluid particle does not
have a definite path and the paths of individual particles cross each other.

In other words, it Is the flow in which fluid particles move in a zigzag path

When a fluid is flowing in a pipe, the type of flow is determined by a non-
dimensional number, called Reynold's number.

For laminar flow, Reynold number <2000

For turbulent flow Reynold number > 4000



Uniform and Non-Uniform Flow

R - LY ] S ‘-’~4‘

Non-uniform Mow

Flow direction

WThe COMET Program

Boulder Creek. Boulder, CO
Photo by Richard Koehlet




laminar flow
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Laminar

Turbulent
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turbulent flow
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The Reynolds number correlates well with flow characteristics.

pV. . D

avg

C

mEr

Re > 4000
turbulent (unpredictable, rapid mixing)

2300 < Re <4000
transitional (turbulent outbursts)

Re <2300
laminar (predictable, slow mixing)



Flow

*esee e

fryYy Y Y

Low discharge

Flow
—>

Medium discharge

High discharge

Laminar Flow: every fluid molecule followed a straight

path that was parallel to the boundaries of the tube.

Transitional Flow: every fluid molecule followed wavy
but parallel path that was not parallel to the boundaries of

the tube.

Turbulent Flow: Every fluid molecule followed

very complex path that led to a mixing of the dye.



Laminar blood flow

Vessel wall E——
Flow
Turbulent blood flow

Laminar  High  Turbulent Laminar
velocity



compressible flow: The flow in which the density of fluid changes, due to pressure and temperature
variations, from point to point during the flow is called compressible flow.
In other words, it is the flow in which the density of a fluid is not constant during the flow.
Mathematically, for compressible flow,

p # constant
Incompressible flow :The flow in which the density of fluid does not change during the flow is called
Incompressible flow. In other words, it is the flow in which the density of a fluid is constant during the
flow.
Mathematically, for incompressible flow,

p = constant
Liquids are generally incompressible which means that pressure and temperature changes have a very

little effect on their volume. Gases are compressible fluids.



Incompressible fluid Compressible fluid



[Gascs are compmssiblc.} (Liquids are not comprcssiblc.]

Liquid

Gas



Compressible Flow




Rotational flow is that type of flow in which fluid particles also rotate about their own axes
while flowing along a streamline.
Irrotational flow is that type of flow in which fluid particles do not rotate about their own axes

while flowing.

Rotational flow Irrotational flow



Fluid particles not rotating

Wall Fluid particles rotating
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Rotational flows Irrotational flows




« An ideal flow Is the flow of a non-viscous fluid. In the ideal flow, no shear stress exists
between two adjacent layers or between the fluid layer and boundary, only normal stresses
can exist in ideal flows.

« The flow of real (viscous) fluids is called real flow. In real flow, shear stress exists between

to adjacent fluid layers. These stresses oppose the sliding of one layer over another

Real fluid flows implies friction effects. Ideal fluid flow is hypothetical;
it assumes no fricton,

TEEEEREEYEYY
TEEEYTY Y

Pipe Ideal tlow Real flow

Velodity distnbution of pipe fow



Friction =0
\deal Flow (p =0)
Energy loss =0

Real

Friction # 0
Real Fiow ( p #0)
Energy loss #0



One dimensional flow is the flow in which parameters (velocity, pressure, density, viscosity
and temperature) vary only in one direction and the flow Is a function of

only one co-ordinate Axis and time. The flow field is represented by streamlines

which are straight and parallel

mathematically, for one-dimensional flow
u=flx),v=0and w=0

LTI VIIIIIIIIIIIA
- o 773 1/f -

- ' - -

B B . s
> o - ','_:f' --------- o

o , -
5 _-.1 ) -_—
i NANA Y

(8) Flow between paraliel plates (b) incompressible flow in a duct

Illustration of one dimensional flow



Although in general all fluids flow three-dimensionally, with pressures and velocities and other
flow properties varying in all directions, in many cases the greatest changes only occur in two

directions or even only in one. In these cases changes in the other direction can be effectively

Ignored making analysis much more simple.

Flow is one dimensional if the flow parameters (such as velocity, pressure, depth etc.) at a given

Instant in time only vary in the direction of flow and not across the cross-section

Mean
Water surface v velocity

——"1 —

Longitudinal section of rectangular channel ¢~ e artion Velocity profile




Two-dimensional flow is the flow in which fluid parameters vary along two directions
and the flow is the function of two rectangular space coordinates (x and y- axis) and
time.

The flow field is represented by streamlines which are curves. mathematically for two-

dimensional flow
u=filx,y),v=Lx,y)and w=0.

/11T 7777778777777

5 B A

Iy

(a) Viscous flow between paraliel plates (b) Flow over a spillway

Hlustration of two dimensional flou



Three-dimensional flow is the flow in which flow parameters change in all the three
directions and the flow is the functions of three mutually perpendicular co-ordinate Axis (X,

y, z-axis) and time. The streamlines are space curves

u=fx,y2,v= fl‘"‘ y,2)and w = f‘(.l'. Y. 2).

é :q %
Viscous flow

in a duct (three
dimensional flow)




» Flow is two-dimensional if it can be assumed that the
flow parameters vary in the direction of flow and in one

direction at right angles to this direction

Flow is three-dimensional if the flow parameters vary in all

three directions of flow

Three-dimensional flow in stilling basin



Rate of Flow or Flow Rate or Discharge:

Quantity of fluid passing through any section in a unit time.

Unit: m3/sec
Types:
1. VWolume Flow Rate = Volume of fluid / Time
=Q or AV
2. Mass Flow Rate = Mass of fluid / Time = p x Volume / Time =

p Q or PAV

3. Weigh Flow Rate = Weight of fluid / Time = (pg x Volume) / Time
= pgQ or pgAV Where, Q = Area x Velocity



Continuity \
» Matter cannot be created or destroyed wan n:.'.

-(it 1s simply changed in to a different form of matter).
» This principle is know as the conservation of mass and we use
Hass ewawl
It in the analysis of flowing fluids.
o _ _ _ An arbitranily shaped control volume

» The principle is applied to fixed volumes, known as control

volumes shown in figure:
» For any control volume the principle of conservation of mass

says

Mass entering per unit time - Mass leaving per unit time =

Increase of mass in the control volume per unit time



Continuity Equation

» For steady flow there is no increase in the mass within the control
volume, so Mass entering per unit time = Mass leaving per unit time

» Derivation:
Lets consider a stream tube.
p1. V; and A, are mass density. velocity and cross-sectional area at
section 1. Similarly, p,. V, and A, are mass density, velocity and cross-

sectional area at section 2.

dM,,)

dt
dM,,

di

M-M,=

-

PAY, - pAY, =

A stream tube

“!; - pl/\l"l
M, = p.AV.



+ For steady flow condition (pr )/ds =0
PAY, - PAY, =0=p AV = pAY,
M=p AV, =pAY,

+ Hence, for stead flow condition, mass flow rate at section |= mass
flow rate at section 2.1.e., mass flow rate is constant.

v Similarly G = p gAY = pAy,

v Assuming incompressible fluid, 2, =p,=p

Contingi lA'V‘:A:V’ - ¢ =0, - 0=0,=0,=0,

i l“erdore. according to mass conservation for steady flow of
incompressble fluids volume flow rate remains same from section
to section,




Problem 5.1  The diameters of a pipe at the sections | and 2 are 10 cm and 15 cm respectively, Find
the discharge through the pipe if the velocity of water flowing through the pipe at section | is
5 m/s. Determine also the velocity at section 2,

Solution. Given : 2
At section 1, D,=10em=01m ® .
PP R Y il
A, 3-4- (D)) z-; (1)"=0007854 m* __ Ip=10em D;=15¢m
V=S mis g a T
At section 2, Dy=15cm=0.15m s Sebec [
k; :14‘- (15)* = 0.01767 m? Fig. 52
() Discharge through pipe is given by equation (5.1)
or Q=AxV,
= 0.007854 x § = 0.03927 m's. Ans,
Using equation (5.3), we have A, V, = A,V,
(if) . Vy= B o 5.0 = 2.22 ms, Ans.

A 001767



Problem 52 A 30 cm diameter pipe, conveying water, branches into two pipes of diameters
20 ¢cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the
discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm

diameter pipe is 2 m/s,

D, =30 em = 030 m
A.-%D.’--:-x.l’-aom&n’

V|'2.$m
Dy=20cm=020m

A} 3':' (.2)’ 3‘:' XAd= 0-03'4 'l’o

v,.zm
Di=15Sem=015m

A, -f (18 -; %0228 = 001767 m*

Find (1) Discharge in pipe | or Q,
(1) Velocity in pipe of dia. 15 cmor V,

Solution. Given :




Let 0, Q, and Q, arc discharges in pipe 1, 2 and 3 respectively.
Then according to continuity equation

Q=0+
(i) The discharge Q, in pipe 1 is given by

Q,= AV, = 007068 x 2.5 m"s = 0.1767 m*s. Ans.
(if) Value of V,

0,= A,V = 0.0314 x 2.0 = 00628 m'/s
Substituting the values of @, and Q, in equation (1)

0.1767 = 0.0628 + Q,

. Qy = 0.1767 - 0,0628 = 0.1139 m*s
But Qy=Ayx Vy=001767 x Vy or 0.1139 = 0.01767 x V,

Vy= SAL 6.44 m/s. Ans.
001767

W)



[MCQ-2]

.33,

In the pipe network as shown in figure, all pipes have the same cross section arcas and
can be assumed to have the same fnction factor. The pipes connecting poants W, N and
S with the joant J have an egual length L The pipe connecting poinis J and E has a
length 10L. The pressures at the ends N, E and 5 arc equal. The flow rate i the pipe
connccting W oand J s Q. Assume that the flmd flow 15 steady, incompressible, and the
pressure losses at the pipe entrance and the junction are neghgible, Consider the
following statecments.

I The flow rate 1n pape connecting J & E 1= % :
[I. The pressure difference between J & N oi1s cgual to the pressure differcnce
between 1 & E.

Flow rate

T°I®

L

Q3

— |

| (1] i
. — s |E
[
Mol o scale

-



Sol.

(d)

h+e+:=0 ... .0)

h=>0 IR |1}

From equation (1) and {n)

2 +0e=0Q............[A) W

Y —

P;— Py=P;— Py Q=3

|

Now
PR PR

{h,_}m = “‘L};

L) fLg
121D 121D

LO; =10LQ;
Q, =100,

From equation (A)
20,+Q,=0Q
210Q,+Q, =Q

o Q
Q= 1+ 2410

0, =0.136 Q)

S0 statement 1 15 wrong and statement 2 15 correct

,FJ_FH_PJ_PI-: “ L

:—ﬁl
-

L.



Velocity of Fluid Particle
Velocity of a fluid along any direction can be defined as the rate of change

of displacement of the fluid along that direction

Resultant velocity V ul4 '-'r] + wk

V=W +v 4w




Acceleration of Fluid Particle
 Acceleration of a fluid element along any direction can be defined as the rate of

change of velocity of the fluid along that direction.

dealeajeak

Where ay, a,, a, are the acceleration vectors in X, Y and Z directions,

respectively.




ya, a and 3, are termed as the total acceleration on respective directions.

» Total acceleration has two components - w.rt time and wrt space and can be
expressed in terms of u, v and w and this can be represented as:

T I
4, =i —tl—tV—tW—
58(3 ox
v v v v
4, =i—t—tV—tW—
oAy &y @
Lol awaw
a, il e | oo 7\ S i Areeny
L.@U | X ay azj
/ T
local acceleration
or
temporal acceleration convective acceleration

» Euler equations are applicable to compressible, incompressible, non-viscous in steady
or unsteady state of flow.



Let Vis the resultant velocity at any point in a fluid flow. Let u, v and w are its component in x, y and

z directions. The velocity components are functions of space-co-ordinates and time. Mathematically,
the velocity components are given as

“ =f|(xc yo & ‘)
v=Lln )
W =f3(xc )‘. & ')

and Resultant velocity, — V=uwi+vj+wk= Ju’ v 4w’

Leta,, a and a, are the total acceleration in x, y and z directions respectively. Then by the chain
rule of differentiation, we have

du du dx am du dz du

a —_—z = — s — —_—
U Y dl g dt a:
But £=u.ﬂ-vami—z==w
dtdt dt

a,--dﬁsuﬁ‘-ﬂ'ia-"wwﬁi»g‘i‘\

@ %y (X Local Acceleration

Similarly, ay = %—:-= " % + V%+ W % +EF «(5.6)




For steady flow, aa:,

or

0, where V is resultant velocity
du &v dw
=0and—=0
o a: ot
Hence acceleration in x, y and z directions becomes
a duxu8u+v8u+w_6l"
Ydt 0 dy &
a_ds'_u8v+v9v+w_a_v
a0y &
a_ﬂ_“aw+vbw+w8w
Tdt o x dy dr
A=aitaj+ak

Acceleration vector

= a,2 +a,2 -Hz:2 .

«(3.7)

«(5.8)



Problem 5.6 The velocity vector in a fluid flow is given
V=40 - 105y] + 21k,
Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = |.

Solution. The velocity components u, v and w are u = 4, v =~ 107 y, w= 2
For the point (2, 1, 3), we have x=2,y=land z= 3 attime 1 = |.
Hence velocity components at (2, 1, 3) are
u=4x (2)’= 32 units
v==10(2)%(1) = - 40 units
w=2x|=2 units
Velocity vector Vat (2, 1, 3) = 32i - 405 + 2k

or Resultant velocity = yu® + v* +w?

=32 +(-40)" +2* = 1024+ 1600+4 = 51.26 units. Ans.



Acceleration is given by equation (5.6)
a- o du

a' w—*—

axby ot
X

d

0,835#35;'0'!\!5;‘#6’
az= U—'H'—i'l"ali'ﬁ
‘ ot

o dy o2

Now from velocity components, we have

o v ou ou
3-;:!2:’ ay::() E:Olﬂd-a- =0

dv dv
5;--2(1:)';--!0:’ —so-a-ao



Substituting the values, the acceleration components at (2, 1, 3) at time £ = | are
a,= 4 (12%) + (- 102y) (0) + 2 % (0) + 0
= 48¢° = 48 x (2)° = 48 x 32 = 1536 units
a,= 4 (- 2009) + (= 106%y) (= 106) + 21 (0) + 0
= - 80x'y + 100x"y
== 80 (2)* (1) + 100 (2)* x 1 = = 1280 + 1600 = 320 units.
a,= 4 (0) + (= 105%y) (0) + (21) (0) + 2.1 = 2.0 units
', Acceleration is A=ai+aj+ak= 15361 + 320§ + 2k, Ans.

Resultant A=y(1536)" +(320)° +(2)° units

=,/2359296+ 102400 + 4 = 1568.9 units. Ans,



Continuity Equation in Three Dimension :
When fluid flow through a full pipe, the volume of fluid entering in to the pipe must be

equal to the volume of the fluid leaving the pipe, even if the diameter of the pipe vary.

Therefore we can define the continuity equation as the equation based on the principle of

conservation of mass.

Therefore, for a flowing fluid through the pipe at every cross-section, the quantity of fluid

per second will be constant.



Consider a fluid clement of lengths dx, dy and dz in the direction of x, y and 2. Let w, v and w are the
inlet velocity components in x, y and 2 directions respectively. Mass of fluid entering the face ABCD
per second

= p x Velocity in x-direction x Area of ABCD
=pxXux(dyxds)

mnmmomuldluvh;metmlim}!mm-pad)dﬂ-d—

dr
', Gain of mass in x-direction
= Mass through ABCD ~ Mass through EFGH per second

-pudm-pudm-%mmm

(pu dydz) dx

---a- (pu dydz) dx
dx Z
&= 'a'a; (pu) dx dyds (% dvdz is constant )
Similarly, the net gain of mass in y-direction 0 y ;
J &z
= = — (pv) ddydz o < g
dy F
dy
and in z-direction B - -a-(pw)m dx o
& Y Fig. 5.6

Net gain of masses = -[-;; (pu) + %(pvh % (pw)] ddydz



Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit

time in the fluid element must be equal to lbcﬁc of increase of mass of Tluid in the cEmenq But mass

of fluid in the element is p. dx. dy. dz and its rate of increase with time ls-g; (p dx. dy. dz) or

&
y dx dy dy

Equating the two expressions,
0,98 _%
. -[-a;(pu)+ 2 ) 2 o = 2. v

or %4- -ai-(pu)+ %(pv) + -éza-(pw) = () [Cancelling dx.dy.dz from both sides] ...(5.34)



Equation (5.34) is the continuity equation in cartesian co-ordinates in its most general form. This
¢quation is applicable to :
(1) Steady and unsteady flow,
(fi) Uniform and non-uniform flow, and
(it/) Compressible and incompressible fluids.

For steady flow.%% = () and hence equation (5.34) becomes as
d d J
y (pu) + » (pv) + g(pw) =) .(5.3B)
If the fluid is incompressible, then p is constant and the above equation becomes as
du dv ow
i o i £ s (54
dx dy 0z Gl

Equation (5.4) is the continuity equation in three-dimensions. For a two-dimensional flow, the com-
ponent w = ) and hence continuity equation becomes as

i‘bﬁ: -0, .(55)

d oy



Problem 5.7  The following cases represent the two velocity components, determine the third com-
ponent of velocity such that they satisfy the continuity equation :

(i) u=xz+y'+z’:v=xy’-yz?{»xy

(i) v= 2)". W= 2X)V%

Solution, The continuity equation for incompressible fluid is given by equation (5.4) as

ﬂ ?.Y. 22.-.0
dx dy o2
Case I, u=r 4y 4 ?:2;
X
v=xy’-yz2+.ry iv-:‘-?.ry--zzu
dy
oy
Substituting the values of & and g in continuity equation.
1t+1ry-z2+x+ﬁ=0
dz
ow 2
or —=-3r-2y+Cordws(-3x-2y+ 2) o2

dz



Integration of both sides gives [dw = [(~3x - 2xy + 2 ) dz

)
or W= [-3:: -2+ 53-] + Constant of integration,

where constant of integration cannot be a function of z. But it can be a function of x and y that is f(x, y).

)
W =(-3n- nyu-f’-] +1(x, ¥). Ans.

3 ai'
C&C“. V-'-'»zy. o b -—34y
oy
ow
w=dyr % Lxy
dv . dw
Substituting the values of 5; and 3; in continuity equation, we get
2"44)%2()':0
dx
ou
or 5;8-@-21?0(“!(-4)'-2!)')4!

2
Integrating, we get u=-4xy-2y% #[(y,2) = =dxy = Xy + 1(y, 2). Ans,



Phreatic Line is a seepage line separating saturated and unsaturated zones

| m/, \ |

mmm«mum |

1 F.ieﬂ filter
Nf=35
Flow Net for an Earth Dam




Stream Function and

Velocity Potential Function
e e e T i

5.8.1 Velocity Potential Function. It is defined as a scalar function of space and time such
that its negative derivative with respect to any direction gives the fluid velocity in that direction. It is
defined by ¢ (Phi). Mathematically, the velocity, potential is defined as ¢ = f(x, v, 2) for steady flow
such that

__ %
o
vz-%;; | (59

where «, v and w are the components of velocity in x, y and z directions respectively,



Cou v Bw_

The continuity equation for an incompressible steady flow is — + — 4 — =
dx dy o

Substituting the values of «, v and w from equation (5.9), we get
df H) 9f % i(_ﬁ)-
3x( Bx)+ 9y( 3y]+3z T

+ort—r =0, (5.10)

0.

or

Equation (5.10) is a Laplace equation.

2
For two-dimension case, equation (5.10) reduces to 09,99 = (), w(311)

dr’ +W

If any value of ¢ that satisfies the Laplace equation, will correspond to some case of fluid flow.



Properties of the Potential Function. The rotational components® are given by
(O au)

m_l
t" 9

\a.l' ay

,,l'.a_“-i"_)
o 2\dr o
ey
o

dy &

®



Substituting the values, of u, v and w from equation (5.9) in the above rotational components, we

get
oo lf3(-B).2 AU T
Co2fae dy) oyl ax)| 2 oxdy dydx
NSIETRN TR WO
2o\ ) o 31/--2_ dedx  dxdz.
nd 0 =1’9.(-92)-_9.(-2€;1’_.a_’9.+9_’o_‘
Co2|y\ o) e dy)| 2| oy oy,

2o o6 e %
If ¢ is a continuous function, then 3 M Sy oxdr

% 0,=0=0=0

When rotational components are zero, the flow is called irrotational. Hence the properties of the
potential function are :

I If velocity potential (9) exists, the flow should be irrotational.

2. 1f velocity potential (¢) satisfies the Laplace equation, it represents the possible steady incom-
pressible irrotational flow.

, ele,



Problem 5.11  The velocity potential function is given by ¢ = 5 (¥ = y°).
Calculate the velocity components at the point (4, 5).

Solution. 0=5(-))
%’i = |0x
% == 10y.
But velocity components u and v are given by equation (5.9) as
U= -g’—; =~ 10x
v=-%}=-(- [0y) = 10y

The velocity components at the point (4, 5), ie., atx=4,y=5
U=~ 10x4=~40 units, Ans.
v=10x 5 = 50 units. Ans,



5.8.2 Stream Function. Itisdefined as the scalar function of space and time, such that its partial
derivative with respect to any direction gives the velocity component at right angles to that direction. It
is denoted by y (Psi) and defined only for two-dimensional flow. Mathematically, for steady flow it is
defined as W = f(x, y) such that

dy
— =
o r +(5.12)
and B_V =i
dy |
The velocity components in cylindrical polar co-ordinalcs in terms of stream function are given as
| dy
= —— and --— (5.12A
LT e ar G

where « = radial velocity and u; = tangential velocity

The continuity equation for two-dimensional flow is E‘i +— i = 0.

dx dy



Substituting the values of u and v from equation (5.12), we get

A o), 8(8v) R 82\|r
Bx( ayJ dy \ ox vioE= away dxdy o

Hence existence of y means a possible case of fluid flow. The flow may be rotational or irrotational.

The rotational component o, is given by @, = %(ﬂ - a—“)
X
Substituting the values of u and v from equation (5.12) in the above rotational component, we get
- _f’_(iv_]-i )| Loy oy
“afaxlax) oyl oy)| 2| 3y

0’y o
ox’ a-

For irrotational flow, ®, = 0. Hence above equation becomes as—-

which is Laplace equation for .

The properties of stream function () are :

I. If stream function () exists, it is a possible case of fluid flow which may be rotational or
irrotational.

2. If stream function () satisfies the Laplace equation, it is a possible case of an irrotational flow.



5.8.6 Relation between Stream Function and Velocity Potential Function

From equation (5.9),

we have

From equation (5.12), we have u =

Thus, we have

Hence

and

do

==-—and v= -—

ox

dy

dy

and v = —

«(5.15)



Problem 5.12 A stream function is given by y = 5x - 6y.
Calculate the velocity components and also magnitude and direction of the resultant velocity at any

point.
Solution. W = 5x -6y
ﬂ =5 and ﬂ =-0.
ox dy

But the velocity components « and v in terms of stream function are given by equation (5.12) as

u= -ﬂ=-(-6)=6unltslsec.Ans.

dy
v= iw— = § units/sec. Ans
ox
Resultant velocity =\[u2 +vi= J62 +5° = J36 +25 =461 = 7.81 unit/sec
Direction is given by, tan 0 = b =% =(.833
"

B=tan"' .833 = 39° 48", Ans.



CONTINUITY EQUATION IN THREE-DIMENSIONS
Consider a fluid element of lengths dx, dy and dz in the direction of x, y and z.

Let u, v and w are the inlet velocity components in X, y and z directions respectively.

Mass of fluid entering the face ABCD per second

= p X Velocity in x-direction x Area of ABCD z
{ " dvdz is constant}
=px U x(dyxdz) DL H o
P I
Gain of mass in X-Direction giv N L7 A
= Mass through ABCD - Mass through EFGH per second B;_ ot y
Y Fig. 5.6

= pu dydz — pu dydz - ai (pu dydz)dx
X

= — i (pu dvdz) dx
dx

- i (pu) dx dyd:
dx



Similarly, the net gain of mass in y-direction |Z
D

S (pv) dxdydz | 4
dy : !
A v E dz
‘ . d Ej‘ﬁ F G X
and in z-direction =— 5 (pw) dxdydz BL-"V dy
< - dx !
- Y Fig. 5.6

Net gain of masses = — 9 (pu)+ i(pw] + 9 (pw) | dxdydz
dx dy dz



Since the mass is neither created nor destroyed in the fluid element, the net increase of

mass per unit time in the fluid element must be equal to the rate of increase of mass of fluid

In the element. But mass

of fluid in the element is p. dx. dy. dz and its rate of increase with time iSa— (p dx. dy. dz)
!

Equating the two expressions,

or —{a—i (pu} + % [pv} + a%(pw]} dxdvdz = % dxdydz

a_p + i{pur) + i(pv] +a% (pw) = 0 [Cancelling dx.dy.dz from both sides]

dr  dx dy

p 2 3 9,
g’fa—x(P“)’fa—y(PF“a—z[Pw} =0




P+ 2 (pu)+ 2 (pv) + 2 (pw) =0

Continuity Equation +
Jdt  ox

dy dz
(i) Steady and unsteady flow,
(1) Uniform and non-uniform flow, and
(iti) Compressible and incompressible fluids.
dp _ i i v i ) =
For steady flnw,a =0 o [PH) + 3y (p ) + o (pw) =0

If the fluid is incompressible, then p is constant and the above equation becomes as

du dv dw
Three Dimensional Continuity equation + + =0
dx dy 0z
: : . _ du dv
Two Dimensional Continuity equation —+—=0.

ox Oy



VELOCITY AND ACCELERATION
Let V is the resultant velocity at any point in a fluid flow.

Let u, v and w are its component in X, y and z directions.
The velocity components are functions of space-co-ordinates and time.

Mathematically, the velocity components are given as
u=filx,y, 2,1
=hHx ¥, 2, 1)
w = f3(x, ¥, 2, 1)

Resultant velocity, V=ui+vi+wk= \/uz +v: +w?



Leta, a, and a, are the total acceleration in x, y and z directions respectively. Then by the chain

rule of differentiation, we have

a_du_aud,r audy_l_au dz+8u
Y dt dx dt 9y dt 9z dt Ot
But E—u d—y—vandd—z=w
dt dt dt

du du du du du

a,=—=u—+v—+

odt ox dy a_z+§
dv dv dv dv  dv

a,=—=u—+v—+

T a T

dw ow ow dw dw
a,=—=y—+v—=+

T " T ey T Ty

For steady flow, E = (), where V is resultant velocity

dul dv ow
0= = d— =
o = gy T Vand=m=0



Hence the acceleration in the X,y and z direction

du du au au
a, = = —+vV— —

dt ox a}* az
dv dv dv dv

a,=—=U—+Vv—+w—

YT dr ox dy 07

dw aw aw ow
a,=—=1 —

Codt Bx Bv+w8_z

Acceleration vector A=ai+aj+ak

_ 2 2
= ,Jﬂx +a




Local Acceleration and Convective Acceleration:

Local acceleration is defined as the rate of increase of velocity with respect to time at a

given point in a flow field.

Convective acceleration is defined as the rate of change of velocity due to the change of

position of fluid particles in a fluid flow.

du  du  du du | du
b dt dx  dy dz | ot

dv dv dv dv |dv Lacal acceleration
, + +
Yo lde dx dy dz | ot

a—d—w—ua—w+va—w+waw+aw
© | dt ox dy dz| o

=
I
|
1
-
|
=
|
=
+




Problem 5.6 The velocity vector in a fluid flow is given
V = 4x°i — 10x°yj + 2tk.
Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = 1.

Resultant velocity, V=zui+vj+wk= Juz +v: +w?

du du du du Jdu
A, = —=U—+V—FW—+—

Yoodt ox dy dz ot




Problem 5.6 The velocity vector in a fluid flow is given
V = 4x°i — 10x°yj + 2tk.
Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = 1.

Solution. The velocity components u, v and w are u = 4x”, v=— 10x* y, w = 2¢
For the point (2, 1, 3), we have x=2,y=1land z=3 at time = 1.
Hence velocity components at (2, 1, 3) are
u=4x(2)° =32 units
v =—10(2)*(1) = — 40 units
w=2x1=2 units
Velocity vector V at (2, 1, 3) = 32i — 40j + 2k

Resultant velocity = \/uz +v? +w?

=\/322 +(=40) + 2% = /1024 + 1600 + 4 = 51.26 units. Ans.



Now from velocity components, we have

du > Ou du ou

= 12x", — =0, —=0and — =10
x ey T T Yy
dv dv 5 OV v
— = — 20xy, - _1 0=
gx = 20w oo = 100, 5n=050=0
ow dw dw dw
a';-: U E—O E—O and a.! 2.1

Substituting the values, the acceleration components at (2, 1, 3) at time = 1 are

Acceleration is

Resultant

a, = 4x° (12x°) + (= 10x%y) (0) + 2t x (0) + 0
= 48x> = 48 x (2)° = 48 x 32 = 1536 units
a, = 4x> (- 20xy) + (- 10x%) (= 10x?) + 21 (0) + 0
= — 80x%y + 100x%y
=-80(2)* (1) + 100 (2)* x 1 = — 1280 + 1600 = 320 units.
a,=4x’ (0) + (- 10x%y) (0) + (2¢) (0) + 2.1 = 2.0 units
A = ai+ agj+ ak= 1536 + 320j + 2k. Ans.

A =4(1536)* +(320)> + (2)* units

=./2359296 + 102400 + 4 = 1568.9 units. Ans.



Substituting the values, the acceleration components at (2, 1, 3) at time 7 = 1 are

Acceleration is

Resultant

a, = 4x> (12x°) + (- 10x%y) (0) + 2t x (0) + 0
= 48x° = 48 x (2)° = 48 x 32 = 1536 units
a, = 4x> (- 20xy) + (= 10x%y) (= 10x°) + 21 (0) + 0
= — 80x*y + 100x™y
~ 80 (2)* (1) + 100 (2)* x 1 = — 1280 + 1600 = 320 units.
a,=4x’ (0) + (- 10x°y) (0) + (21) (0) + 2.1 = 2.0 units
A=aj+aj+ ak=1536i + 320j + 2k. Ans.

A =4/(1536)7 +(320)> +(2)° units

=./2359296 + 102400 + 4 = 1568.9 units. Ans.



Problem 5.7 The following cases represent the two velocity components, determine the third com-
ponent of velocity such that they satisfy the continutty equation :

(1) u=x° +y2+z‘?; v=xy‘?—yz‘?+xy

(ii) v = 2}?2, W = 2xyzZ.

Solution. The continuity equation for incompressible fluid is given by equation (5.4) as
du . dv N aw

=0
dx dy 0z




Velocity Potential function and Steam function

Velocity Potential Function. It is defined as a scalar function of space and time such
that its negative derivative with respect to any direction gives the fluid velocity in that direction. It is

defined by ¢ (Phi). Mathematically, the velocity, potential i1s defined as ¢ = f(x, v, z) for steady flow
such that

p=_ 90
ox
__9
V= a:l}
__900
T

Properties of the Potential Function. The rotational components* are given by



Properties of the Potential Function. The rotational components* are given by
()] =l(av—au) _l au_aw m—l(a_w_ﬂ
© 2 1lox dy Oy = 2\dz dx o2 dy 0z
ool i[_a‘i’]_ J [_34’)_:1 _ 9% 2%
© 2lox\ dy) Iy ox 2| dxdy dydx
o oL i(_aq:)_ 2 [_aq:]'_l _90% 9%
Y21z 9x) ox\ 9z)| 2| 0z0x 9x0z

WEEE
) dy\ dz) dz\ dy 2| dydz dzdy




0, =0,=n,=0.

When rotational components are zero, the flow 1s called irrotational. Hence the properties of the
potential function are :

1. If velocity potential (¢) exists, the flow should be irrotational.

2. If velocity potential (¢) satisfies the Laplace equation, it represents the possible steady incom-
pressible irrotational flow.



Stream Function. Itis defined as the scalar function of space and time, such that its partial

derivative with respect to any direction gives the velocity component at right angles to that direction. It
is denoted by y (Psi) and defined only for two-dimensional flow. Mathematically, for steady flow it is

defined as y = f (x, y) such that

A
a.:-:_v

v _
dy

-

H

E

The continuity equation for two-dimensional flow 1s gH + gv = 0.
X y

8(_8w] a[aw)_ﬂm oy Aty 0

+— | — | = - + =
dx\ dy ) 9yl ox dxdy  dxdy

Hence existence of y means a possible case of fluid flow. The flow may be rotational or irrotational.



The rotational component ®, is given by ®, = 1 [av ou ]

2lox dy
o=l i[ﬂ_wj_i _ov) 1|2y %y
o2 lox\ax) a9yl oy )| 2|axt oy’
2
For irrotational flow, , = 0. Hence above equation becomes as oy + o =0

dx?  9y?

The properties of stream function (y) are :

1. If stream function () exists, it is a possible case of fluid flow which may be rotational or
irrotational.

2. If stream function () satisfies the Laplace equation, it is a possible case of an irrotational flow.



Relation between Stream Function and Velocity Potential Function

d d
u=——q}andv=——¢ Lo OV Y
dx dy dy ox
, __db_ dy _ 90 _dy
Thus, we have U= Wi 3 and v = ay_ax
Hence @:a—w
dx dy
9% _ _9y
and ay_ »
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In the previous Unit ,

we studied the velocity and acceleration at a point in a fluid flow, without taking into
consideration the forces causing the flow.

This Unit includes the study of forces causing fluid flow. Thus dynamics of fluid flow is the
study of fluid motion with the forces causing flow.

The dynamic behaviour of the fluid flow Is analysed by the Newton's second law of motion,
which relates the acceleration with the forces.

The fluid is assumed to be incompressible and non-viscous.



EQUATIONS OF MOTION

According to Newton's second law of motion, the net force F, acting on a fluid element in the
direction of x Is equal to mass m of the fluid element multiplied by the acceleration a, in the
X-direction. Thus mathematically,

Fy =M a,

In the fluid flow, the following forces are present:

(1) E,, gravity force.

(11) E, the pressure force.

(i) F, force due to viscosity.

(iv) F; force due to turbulence.

(V) F., force due to compressibility.

The net force
Net Force=F, +F,+F, +F, +F,



the net force
F .= (Fg)_,_, + (FP}_,_, +(F),+ (F) + (F.),.

(i) If the force due to cnmpressihility, F’E is negligible, the resulting net force
and equation of motions are called Reynold’s equations of motion.

(if) For flow, where (F,) is negligible, the resulting equations of motion are known as
Navier-Stokes Equation.

(111) If the flow is assumed to be ideal, viscous force (F ) is zero and equation of motions are
known as Euler’s equation of motion.



EULER'S EQUATION OF MOTION
This is equation of motion in which the forces due to gravity and pressure are taken into

consideration. This is derived by considering the motion of a fluid element along a stream-line as :

Consider a stream-line in which flow is taking place in s-
direction as shown in Figure.

Consider a cylindrical element of cross-section dA and
Length ds.

The forces acting on the cylindrical element are:




1. Pressure force pdA in the direction of flow.

Jd
2. Pressure force ( p+ a—P dsj dA opposite to the direction of flow.
)

3. Weight of element pgdAds.

Let O is the angle between the direction of flow and the line of action

of the weight of element.
The resultant force on the fluid element In the direction of s must be

equal to the mass of fluid element X acceleration in the direction s.

pgdAds

(@) (b)
Forces on a fluid element.




d
pdA - [p +—p¢is) dA —pgdAdscos © = pdAds % d,

ds
where a, is the acceleration in the direction of s.
dv . A
Now a, = = where v is a function of s and 1.

-asd!+ar_ Ei's+at

_dvds dv _vdv dv {_.d_s_v}

dt
d
If the flow is steady, a—” =0
;
vov
a, = E

pgdAds

(a) (b)
Forces on a fluid element.




pdA - [P+B—P

s

dp

—— dsdA — pg dAds cos 8 = pdAds X

s

Dividing by

- —— —gcosB=

dp

pds

pdsdA,

dp vav

pds 35

dv
+gcosB+v—=

ds

we have cos B = —

dz
ds

-:is) dA — pgdAds cos © = pdAds X d

ds

pgdAds

(a) (b)
Forces on a fluid element.




dp

dv

— +gcosB+v—=0

pds

p ds

1 d
P4

dp

ds

d d
6z | vav

= =0
gds ds

—= + gdz + vdv = ()
p

dp

p

+ gdz + vdv =10

we have cos B = E
ds

Euler’s equation of motion.

pgdAds

(a) (b)
Forces on a fluid element.




BERNOULLI’'S EQUATION FROM EULER’S EQUATION

E+g:::':—:+1|,=.:1'v=ﬂ

P

Euler’s equation of motion.

Bernoulli’s equation is obtained by integrating the Euler’s equation of motion

J"ﬁr_l'ljI + ‘[gd;{ + ‘[L’dv = constant
p

If flow is incompressible, p is constant and

2 . v?
P V £+ Fi +p— = constant A + — 4+ Z = constant
— + 27 + — = constant pg 2z pg 2g

p 2

£ _ pressure energy per unit weight of fluid or pressure head.

P8



BERNOULLI’'S EQUATION FROM EULER’S EQUATION

2

P v
+ + Z = constant

pg 2g

£ _ pressure energy per unit weight of fluid or pressure head.

P

vzfzg = kinetic energy per unit weight or kinetic head.

z = potential energy per unit weight or potential head.

The following are the assumptions made in the derivation of Bernoulli’s equation :
(1) The fluid is ideal, i.e., viscosity i1s zero (1) The flow 1s steady
(iii) The flow is incompressible (iv) The flow is irrotational.



PRACTICAL APPLICATIONS OF BERNOULLI'S EQUATION
Bernoulli's equation is applied in all problems of incompressible fluid flow where energy considerations

are involved. But we shall consider its application to the following measuring devices:
1. Venturimeter.
2. Orifice meter.

3. Pitot-tube.



1.Venturimeter. A venturimeter is a device used for measuring the rate of a

flow of a fluid flowing through a pipe. It consists of three parts: i

(i) A short converging part, —= I &—zf —® :—;_—;; =

(if) Throat, and Sl il Wi
(i) Diverging part. Vonurinetor.

It is based on the Principle of Bernoulli's equation.

Consider a venturimeter fitted in a horizontal pipe through which a fluid is flowing (say water), as
shown in Figure and

Let d, = diameter at inlet or at section (1),

P, = pressure at section (1)

V; = velocity of fluid at section (1), a = area at section (1) = g d;°

d,, P,,V, ,a, are corresponding values at section (2).



Applying Bernoulli's equation at sections (1) and (2), we get

2 2 e
Ly Ly =242 47, — q g——_d)_—_::;—:
PS’ 23 ﬂ 23 i —::|: \T
INLET HROAT
As pipe is horizontal, hence z; =
pIp ‘= Venturimeter.
2 2
P|+”1 =F2+"'2 Pl_P:=”§_"12
pg 2g pg 2g| ° | pg 28 2
But Pr= P2 i the difference of pressure heads at sections 1 and 2 and it is equal to A
P8
P\~ Py _ h
P8
2 2
Va Vi

2g 2g




Now applying continuity equation at sections 1 and 2

a, Vv,
av,=a,v, Oor v, = .
|

2
AT
2 2 2 2
h_vz 4'.'11 _I-’rz|:_ﬂ2:| =v2|:-:1|—£12:|

2
vf =2gh ;I—l

2 2
Va Vi
2g 2g




Discharge :

Q = ayv,




Discharge under ideal conditions and is called, theoretical discharge.

Actual discharge will be less than theoretical discharge.

act ,Jaa ”2 "0.I' 2g h
1

C, = Co-efficient of venturimeter and its value is less than 1.




Value of 'n' given by differential U-tube manometer
Case |. Let the differential manometer contains a liquid which is heavier than the liquid

flowing through the pipe. Let Mete: -

entran

Sy, = Specific gravity of the heavier liquid

v
Pipe 1

So = Specific gravity of the liquid flowing through pipe

x = Difference of the heavier liquid column in U-tube l A
o \__/
h=x|—-2-1
S




Case Il. If the differential manometer contains a liquid which is lighter than the

liquid flowing through the pipe, the value of h is given by

where
S; = Specific gravity of lighter liquid in U-tube
So = Specific gravity of fluid flowing through pipe

X = Difference of the lighter liquid columns in U-tube.

h=x l—i
SI‘.:'




Case I11. Inclined Venturimeter with Differential U-tube manometer.
The above two cases are given for a horizontal venturimeter. This case Is related
to inclined venturimeter having differential U-tube manometer. Let the

differential manometer contains heavier liquid then h is given as

()
Pg Pg So




Case IV : Similarly, for inclined venturimeter in which differential manometer contains a

liquid .which is lighter than the liquid flowing through the pipe, the value of h is given as

f )
pg pg S




Problem 6.10 : A horizontal venturimeter with inlet and throat diameters 30 cm and 15
cm respectively i1s used to measure the flow of water. The reading of differential
manometer connected to the inlet and the throat is 20 cm of mercury.

Determine the rate of flow. Take €4 = 0.98.

¥
: : < |
Diameter at inlet=d; =30cm T el |
—> J = _@ —_—:E —
T T — ! o ] 5 9
Area at inlet, a,=— d,* =~ (30)* = 706.85 cm” X | \r
4 4 INLET HROAT
Dia. at throat, d,=15cm Venturimeter.

a,= % x 15% = 176.7 cm?

C,=0.98
Reading of differential manometer = x = 20 cm of mercury.



\THROAT

5,

i _ Venturimeter.
where §, = Sp. gravity of mercury = 13.6, S, = Sp. gravity of water = 1
13.6
=20 T_ 11 =20x 12.6 cm = 252.0 cm of water.
0=C, i'“? — x \[2gh
al —a; _ 8606759336  _ 8606759336
J499636.9 —-31222.9 684.4

706.85 x176.7

=0.98 x X 4/2 X 9.81 X 252 _ 3, 125756 .
J(q05_35)2 - (176.7)> v = 125756 cm™/s = 1000 lit/s = 125.756 lit/s. Ans.




Problem 6.11 An oil of specific gravity 0.8 is flowing through a venturimeter having inlet
diameter 20 cm and throat diameter 10 cm. The oil-mercury differential manometer shows
a reading of 25 cm. Calculate the discharge of oil through the horizontal venturimeter.

Take C;=0.98.

Sp. gr. of oil, S,=0.38
Sp. gr. of mercury, S, = 13.6
Reading of differential manometer, x = 25 cm

S
.. Difference of pressure head, h = x {—”— l}

o

=25 [E—‘:—l] cm of oil = 25 [17 = 1] = 400 cm of oil.



—

d, =20 cm a, = % dj= g x 20% = 314.16 cm®
d, = 10 cm a, = % x 10% = 78.54 cm’
C,= 0.9

da,
Q=C¢! 21 2 > x.,liZgh

a, — a,

= 0.08 x o HOXTE . ;5081 %400

J(314.16)> - (78.54)°

_ 2142137568 _ 21421375.68
/98696 — 6168 304

= 70465 cm?>/s = 70.465 litres/s. Ans.

cm’/s




Momentum Equation

In fluid Mechanics, the analysis of motion is performed in the same way as in solid mechanics (by

use of “Newton’s Laws of Motion™).

From solid mechanics (Newton’s Second Law) stated that:
Total Force(F) = ma

m = mass of the solid body , a =acceleration

But, in fluid mechanics, it is not clear what mass of moving fluid, thus we should use a

different form of the equation of Newton’s Second Law.



Momentum Equation

Newton’s 2nd Law (for fluids) can be written as following: The rate of change of momentum of a

body is equal to the total force acting on the body, and takes place in the direction of the force.

Rate of change of momentum is: ) fﬂ,,f;z

= Mass Flow Rate x Change of velocity i‘t,ﬂr P,
g »

=m(V, V1) = Py

According Newton’s 2nd law:
F=m(V, -V,),

Mass flow rate = m=pQ

F =pQ (V; —11),

This is the total force acting on the fluid in the direction of motion.



Momentum Equation

Newtons Second Law

Total Force(F) = ma

Qo dv
Cdt
_ . dv_ dmv)
(F)_mdt_ dt
F.dt =d(mv)

Impulse = change of momentum

Rate of change of momentum

Impulse momentum equation



Application of Momentum Equation

This equation has wide-ranging applications in various fields. One key application is in the design
and analysis of fluid flow systems, such as pipes, channels, and centrifugal pumps, where the

momentum equation helps determine the force and pressure exerted on the fluid as it flows through

these systems.

-Pipe Bend




Fy = Force exerted by liquid on nozzle
or pipe bend in X — Direction
— E, = Force exerted by Nozzle or Pipe bend

on the Liquid In X-direction
Fy = Force exerted by liquid on nozzle

or pipe bend in Y — Direction

— F, = Force exerted by Nozzle or Pipe bend

on the Liquid iInY-direction

fa)



Force in X- Direction

Net Force in X-Direction

=P;A; - P,A, cos O - Fy

Rate of change of Momentum

= m (V, Cos 0 -1V;)
=P A1V1 (Vz Cos 0 - Vl)

Force in Y- Direction

Net Force in Y-Direction

=0-P,A;,SIn0-F,

Rate of change of Momentum

= mV,sin0 -0

Resultant Force = \/F)? + Ff

F
Tan 6 = =L
Fyx



Momentum of Momentum Equation
Net Torque = Rate of change of momentum of momentum

Vg

= —
1 IIL‘VA %'; ﬂ:

Momentum at section -1

m V;
mV,r

Resulting Torque or Net Torque

(T)=m (Vory-Viry)
(T)=p A V1 (Vory - Vi1 )

Vs
Momentum at section -2

m V,
mV,r,
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IMPAGCT OF JETS AND\
JEA PROPULSION .-




INTRODUCTION

The liquid comes out in the form of a jet from the outlet of a nozzle, which is fitted to a pipe

through which the liquid is flowing under pressure.
If some plate, which may be fixed or moving, Is placed in the path of the jet, a force is

exerted by the jet on the plate. This force is obtained from Newton's second law of motion or

from impulse-momentum equation.

Thus impact of jet means the force exerted by the jet on a plate which may be stationary or

moving.



In this Unit, the following cases of the impact of jet i.e., the
force exerted by the jet on a plate, will be considered:

1. Force exerted by the jet on a stationary plate when

(a) Plate is vertical to the jet,

(b) Plate is inclined to the jet, and

(c) Plate is curved.

2. Force exerted by the jet on a moving plate, when

(a) Plate is vertical to the jet,

(b) Plate is inclined to the jet, and

(c) Plate is curved.



1. Force exerted by the jet on a stationary Vertical plate

V = \elocity of the jet

d= Diameter of the jet PJPE NOZZLE
. . T » R
a = area of cross-section of the jet = y - ST P - s
. . | e
The jet after striking the plate, will move along the plate. JET OF WATER

But the plate is at right angles to the jet. Hence the jet
after striking, will get deflected through 90°. Force exerted by jet on ver\t/,-caz plate.
Hence the component of the velocity of jet, in the

direction of jet, after striking will be zero.

The force exerted by the jet on the plate in the direction

of jet,



The force exerted by the jet on the plate in the direction of jet, PIPE

/ NOZZLE

Initial momentum — Final momentum e

Time i - - - —;—_EY_;_;__—_t_l- ’

(Mass X Initial velocity — Mass X Final velocity) ’

= JET OF WATER
Time
,.

Mass . . : : : v

= Time [Initial velocity — Final velocity] Force exerted by jet on vertical plate.

= (Mass/sec) x (velocity of jet before striking — velocity of jet after striking)
= paVlV - 0]

= paV?



For deriving above equation,
If the force exerted on the jet is to be calculated : then final velocity -initial velocity

If the force exerted by the jet on the plate is to be calculated, then initial velocity - final

velocity Is taken.



Force Exerted by a Jet on Stationary Inclined Flat Plate.
Let a jet of water, coming out from the nozzle, strikes an inclined flat plate as shown in

Figure

Let V = Velocity of jet in the direction of X,
©® = Angle between the jet and plate,
a = Area of cross-section of the jet.

Then mass of water per sec striking the plate = p x aV

Jet striking stationary inclined plate



If the plate is smooth and If it is assumed that there is no loss of energy due to impact
of the jet, then jet will move over the plate after striking with a velocity equal to

Initial velocity i.e., with a velocity V.

Let us find the force exerted by the jet on the plate in the direction normal to the

plate. Let this force Is represented by F,,

F,, = mass of jet striking per second x [ Initial velocity of
jet before striking in the direction of n - Final velocity of

jet after striking in the direction of n]

=paV [Vsin 8-0]

= paV” sin O



This force can be resolved into two components, one in the direction of
the jet and other perpendicular to the direction of flow.

Then we have,

F. = component of F, in the direction of flow
=F, cos (90°-90)
= F, sin 0
= pA V* sin 0 X sin 0
= pAV* sin” @

F,= component of F,, perpendicular to flow
= F, sin (90° - 0)

=F,cos0 = pAVz sin O cos ©.



Force Exerted by a Jet on Stationary Curved Plate
(A) Jet strikes the curved plate at the centre.

Let a jet of water strikes a fixed curved plate at the
centre as shown in Figure.

The jet after striking the plate, comes out with the same
velocity if the plate is smooth and there is no loss of
energy due to impact of the jet, in the tangential
direction of the curved plate.

The velocity at outlet of the plate can be resolved into
two components, one in the direction of jet and other
perpendicular to the direction of the jet.

Component of velocity in the direction of jet = -V cos ©

FIXED

CURVED
PLATE

Jet striking a fixed curved plate at centre.



(-ve sign iIs taken as the velocity at outlet is in the opposit
direction of the jet of water coming out from nozzle).

Component of velocity perpendicular to the jet =V sin 0

FIXED
CURVED
PLATE

Force exerted by the jet in the direction of jet,

F .= Mass per sec x [V, -V,,]

V|, = Initial velocity in the direction of jet = V Jet striking a fixed curved plate at centre.

V,, = Final velocity in the direction of jet = - V cos 6
F,= paV[V - (- V cos 0)]

= paV[V + V cos 0]

= paV’[1 + cos 0]



F, = Mass per sec X [V, — Vy, |

V,. = Initial velocity in the direction of y = 0

ly
V,, = Final velocity in the direction of y = V sin 6
ﬂ,: paV[0 - V sin 0]

= — paV” sin 0

-ve sign means that force is acting in the downward direction. In this

case the angle of deflection of the jet = (180° - 8)



(B) Jet strikes the curved plate at one end tangentially when the plate is symmetrical.

Let the jet strikes the curved fixed plate at one end

\V\ V sin 6
tangentially as shown in Figure. N\\%\
V cos 0
Let the curved plate is symmetrical about x-axis. \\ % PLATE
F,,, 7
Then the angle made by the tangents at the two ends I_F @‘

of the plate will be same.

Jet striking curved fixed plate at one end.



Let V = Velocity of jet of water,
0 = Angle made by jet with x-axis at inlet tip of the curved plate.

If the plate is smooth and loss of energy due to impact is zero, then the

CURVED

velocity of water at the outlet tip of the curved plate will be equal to V. ¥ PLATE

The forces exerted by the jet of water in the directions of x and y are
F. = (mass/sec) x [V,, = V,,]
= paV[V cos 0 — (- V cos 0)]

= paV[V cos 8 + V cos 0]

= 2paV? cos 0

D /
.
F'g.' —_ pﬂ V[VI = VZ'L'] — pﬂV[ Vsin 8 — V sin 0 ] =0 Jet striking curved fixed plate at one end.



(C) Jet strikes the curved plate at one end tangentially when the plate is
unsymmetrical.

When the curved plate i1s unsymmetrical about x-axis, then angle made by the tangents drawn at the

Inlet and outlet tips of the plate with x-axis will be different.

0 = angle made by tangent at inlet tip with x-axis,

¢ = angle made by tangent at outlet tip with x-axis.

The two components of the velocity at inlet are
Vi,=VcosBand V, = Vsin 6

The two components of the velocity at outlet :are-.
Vo,==Vcecos¢and V,, = Vsin ¢



il e ¥

The forces exerted by the jet of water in the directions of x and y are

Fy=paVlV, - V5]
= paV[V cos 6 — (-V cos )]

= paV[V cos 8 + V cos ¢ ]

= paV? [cos O + cos 0]
Fy=paVlVy, = Vyl
= paV[V sin 6 — V sin ¢]

= paV* [sin O - sin ¢].



Force on the Inclined Plate Moving in the Direction of the Jet.
Let a jet of water strikes an inclined plate, which is moving with a uniform velocity in the

direction of the jet as shown in Figure
Let
V = Absolute velocity of jet of water,

u = Velocity of the plate in the direction of jet,

a = Cross-sectional area of jet, and
® = Angle between jet and plate.

Relative velocity of jet of water = (V - u)

There fore The velocity with which jet strikes = (V - u) Jet striking an inclined
Mass of water striking per second moving plate.

=pxax(V-u)



If the plate Is smooth and loss of energy due to impact of the jet is assumed zero,
the jet of water will leave the inclined plate with a velocity equal to (V- u).

The force exerted by the jet of water on the plate in the direction normal to the

plate is given as

E, = Mass striking per second x [Initial velocity in the normal direction with
which jet strikes - Final velocity]

=pa(V-—u)[(V-u)sinb—-0] =

=pa (V —u)? sind



This normal force F, is resolved into two components namelyFE, and Fy in the direction of the jet and

perpendicular to the direction of the jet respectively.
F,=F, sin 0= pa (V- u)*sin’ 0

F,=F, cos 6 = pa (V — u)* sin O cos 0

Work done per second by the jet on the plate

= F, X Distance per second in the direction of x

=F . xu=pa(V—-u)sin0xu=pa(V-u)usin°0 N m/s.



Problem 17.11 A jet of water of diameter 10 cm strikes a flat plate normally with a velocity of
15 m/s. The plate is moving with a velocity of 6 m/s in the direction of the jet and away from the jet. Find:

(i) the force exerted by the jet on the plate
(1) work done by the jet on the plate per second.

Diameter of the jet, d=10cm=0.1 m
Area, a=p=r (.1)? = .007854 m?
4 4
Velocity of jet, V=15 m/s
Velocity of the plate, u=6 mfs.

(1) The force exerted by the jet on a moving flat vertical plate is given by equation

F.=pa (V- u)> =1000x.007854 x (15 - 6)> N = 636.17 N. Ans.

N Nl

(if) Work done per second by the jet = F_x u = 636.17 x 6 = 3817.02 Nm/s. Ans.



Force Exerted by a Jet of Water on an Unsymmetrical Moving Curved Plate when Jet

Strikes Tangentially at one of the Tips. et =1 Vo [
g

Figure shows a jet of water striking a moving
curved plate (also called vane) tangentially, at one
of its tips.

As the jet strikes tangentially, the loss of energy
due to impact of the jet will be zero.

In this case as plate is moving, the velocity with
which jet of water strikes iIs equal to the relative

velocity of the jet with respect to the plate

C

Jet striking a moving curved vane at one of the tips.




Force Exerted by a Jet of Water on an Unsymmetrical Moving Curved Plate when Jet

Strikes Tangentially at one of the Tips.

Also as the plate i1s moving In different
direction of the jet, the relative velocity at
Inlet will be equal to the vector difference of
the velocity of jet and velocity of the plate

at inlet.

Jet striking a moving curved vane at one of the tips.



V, = Velocity of the jet at inlet.
1 ¥ J l<—U2—>4VWz

u, = Velocity of the plate (vane) at inlet.

Vr, = Relative velocity of jet and plate at inlet.

o = Angle between the direction of the jet and direction of motion of the plate, also

called guide blade angle.
0 = Angle made by the relative velocity (H,I} with the direction of motion at inlet also

called vane angle at inlet.

le and Vf = The components of the velocity of the jet V|, in the direction of motion and perpen-

dicular to the direction of motion of the vane respectively.

V,, =Itis also known as velocity of whirl at inlet.

V, = Itis also known as velocity of flow at inlet.

Uy —»
V, = Velocity of the jet, leaving the vane or velocity of jet at outlet of the vane. t— 1 v 4

Jet striking a moving curved vane at one of the tips.



i, = Velocity of the vane at outlet. ety Vo )"_I—

Vrz = Relative velocity of the jet with respect to the vane at outlet.

B = Angle made by the velocity V, with the direction of motion of the vane at outlet.

O = Angle made by the relative velocity 1!}1 with the direction of motion of the vane at

outlet and also called vane angle at outlet.

le and Vf. = Components of the velocity V,, in the direction of motion of vane and perpendicular

to the direction of motion of vane at outlet.

V., = Itis also called the velocity of whirl at outlet.

V, = Velocity of flow at outlet.

The triangles ABD and EGH are called the velocity triangles at inlet and outlet. These velocity V P‘
triangles are drawn as given below :
Jet striking a moving curved vane at one of the tips.



F, is written as F, = paV, [V, +V, ]

Work done per second on the vane by the jet

= Force X Distance per second in the direction of force

=F. xu=paV, [V, £V Ixu

+ , =l[v,.,.1 +V, 1xuNm/N
Work done per second per unit weigl £ second

— R

p'ﬂp:'l |_le ivﬂ'z]xu Nm.‘FS
~ Weight of fluid striking/s N/s

_pav, [le tV, ] X u t.u1 _—

g X pav,

V,, >

Jet striking a moving curved vane at one of the tips.

=l[Vw iVH,]}{uNmm
g 1 2



r

Work done/sec per unit mass of fluid striking per second

pav, |V, V. |xu  Nm/s
~ Mass nt: fluid striking /s kg /s

pav, [le +V, J X U

Nm/k
paV £

hi

=(V,, +V, )xuNm/kg

Jet striking a moving curved vane at one of the tips.



3. Efficiency of Jet. The work done by the jet on the vane given by equation (17.20), is the output
of the jet whereas the initial kinetic energy of the jet is the input. Hence, the efficiency (1)) of the jet
i1s expressed as

Output
Input
_+_
_ Work done per second on the vane pa V”t (V“'- — V‘*‘z ) X u
Initial K. E. per second of the jet 1 mV;?
2 u

where m = mass of the fluid per second in the jet = paV,
V, = iInitial velocity of jet

. palf,l V,, £V, | xu D

— V }{Vz | <—U1‘ v

Wy

Jet striking a moving curved vane at one of the tips.



Force Exerted by a Jet of Water on a Series of VVanes.

The force exerted by a jet of water on a single moving plate
(which may be flat or curved) is not practically feasible. This
case Is only a theoretical one. In actual practice, a large
number of plates are mounted on the circumference of a
wheel at a fixed distance apart as shown in Figure. The jet
strikes a plate and due to the force exerted by the jet on the
plate, the wheel starts moving and the 2nd plate mounted on
the wheel appears before the jet, which again exerts the force
on the 2nd plate. Thus each plate appears successively
before the jet and the jet exerts force on each plate. The

wheel starts moving at a constant speed.

PLATES
/ oy WHEEL

JET OF WATER
Jet striking a series of vanes.



PLATES
/ S WHEEL

V = Velocity of jet,
d = Diameter of jet,

a = Cross-sectional area of jet, = T 2
4

u = Velocity of vane.

In this case the mass of water coming out from the nozzle per

second Is always in contact with the plates, when all the plates --F—\l-‘:'—iv--—m:--:
are considered. Hence mass of water per second striking the L S—

Jet striking a series of vanes.

series of plates = pav.
Also the jet strikes the plate with a velocity = (V - u).

After striking, the jet moves tangential to the plate and hence the velocity component in the

direction of motion of plate Is equal to zero.



The force exerted by the jet in the direction of motion of plate,

F, = Mass per second [Initial velocity — Final velocity]

= paV[(V - u) - 0] = paV[V - u]
Work done by the jet on the series of plates per second

= Force X Distance per second in the direction of force

=F . Xu =paVlV-ulxu

Kinetic energy of the jet per second

1 1
=5FHV2 =%(pa‘if’)x‘lﬁ2 =EPHV3

Efficiency, n = Work done per second _ paV|V —u| X u

~ Kinetic energy per second - 1 v?

2P

2ulV - u

VE



Condition for Maximum Efficiency. For a given jet velocity V, the

efficiency will be maximum when

Work done per second  paV|[V —u|xu _ 2u|V —u]

Kinetic energy per second %pa‘!} V2
(d — 2
an _ 0 Or d |2u(V —u) or d |:2u1f'—2u ] ~ 0
du du Vz du v?
V22X Gy v _4u=0
V.-
Vv
U= —,.
2




Maximum Efficiency.

Substituting the value of V = 2u

_ 2u|2u —uj
nmﬂ:{ - (2“)2

_ fuxu ; = 0.5 or 50%.

C 2ux2u




