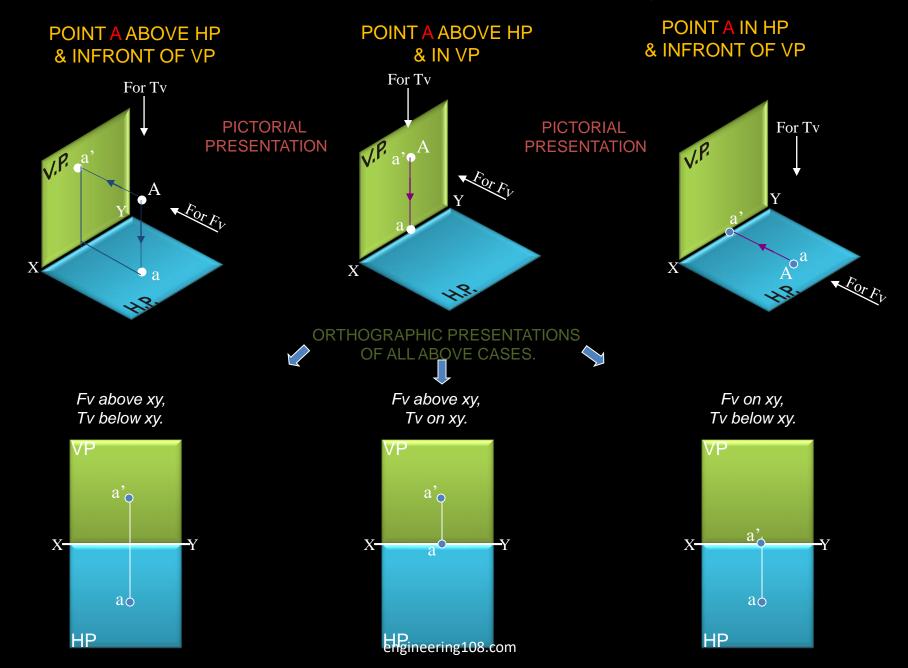
Projection of point and line

NOTATIONS

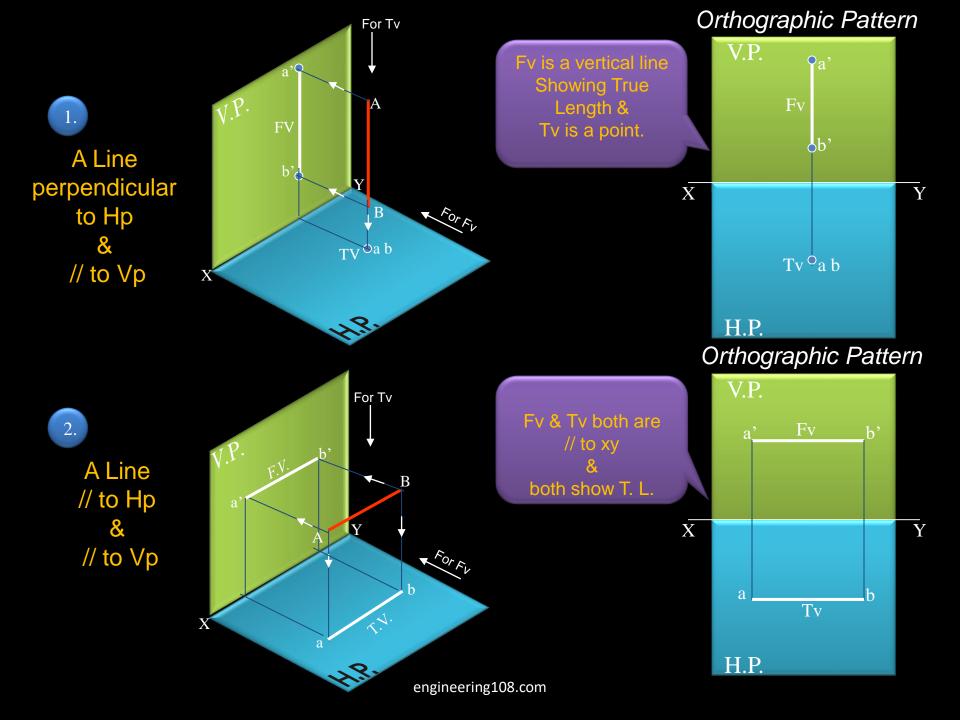
FOLLOWING NOTATIONS SHOULD BE FOLLOWED WHILE NAMEING DIFFERENT VIEWS IN ORTHOGRAPHIC PROJECTIONS.


OBJECT	POINT A	LINE AB
IT'S TOP VIEW	a	a b
IT'S FRONT VIEW	V a'	a'b'
IT'S SIDE VIEW	a"	a" b"

SAME SYSTEM OF NOTATIONS SHOULD BE FOLLOWED
INCASE NUMBERS, LIKE 1, 2, 3 – ARE USED.

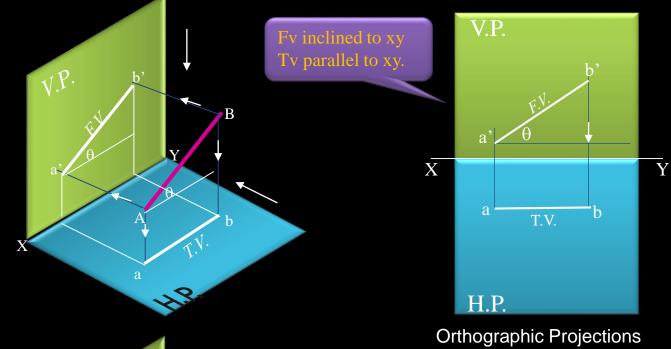
THIS QUADRANT PATTERN,
IF OBSERVED ALONG X-Y LINE (IN RED ARROW DIRECTION)
WILL EXACTLY APPEAR AS SHOWN ON RIGHT SIDE AND HENCE,
IT IS FURTHER USED TO UNDERSTAND ILLUSTRATION PROPERLLY.

PROJECTIONS OF A POINT IN FIRST QUADRANT.

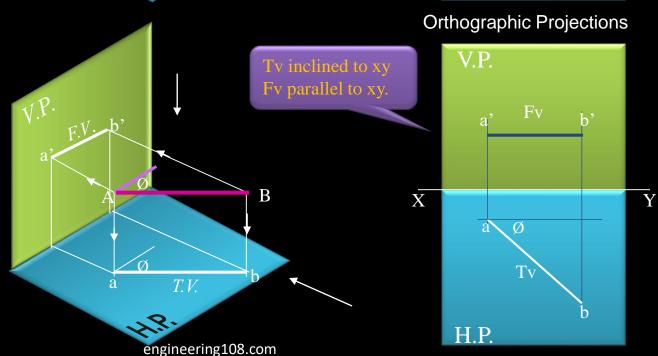

PROJECTIONS OF STRAIGHT LINES.

INFORMATION REGARDING A LINE means
IT'S LENGTH,
POSITION OF IT'S ENDS WITH HP & VP
IT'S INCLINATIONS WITH HP & VP WILL BE GIVEN.
AIM:- TO DRAW IT'S PROJECTIONS - MEANS FV & TV.

SIMPLE CASES OF THE LINE


- A VERTICAL LINE (LINE PERPENDICULAR TO HP & // TO VP)
- LINE PARALLEL TO BOTH HP & VP.
- LINE INCLINED TO HP & PARALLEL TO VP.
- 4. LINE INCLINED TO VP & PARALLEL TO HP.
- LINE INCLINED TO BOTH HP & VP.

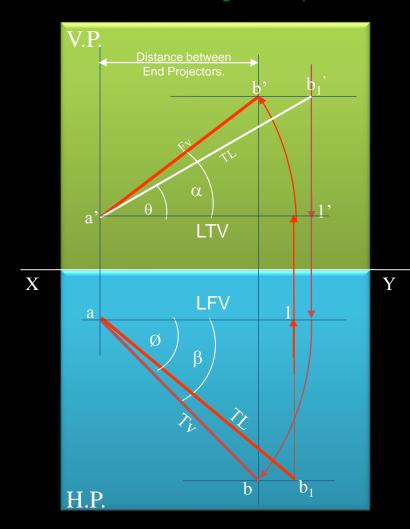
STUDY ILLUSTRATIONS GIVEN ON NEXT PAGE SHOWING CLEARLY THE NATURE OF FV & TV OF LINES LISTED ABOVE AND NOTE RESULTS.


3.

A Line inclined to Hp and parallel to Vp

4.

A Line inclined to Vp and parallel to Hp



The most important diagram showing graphical relations among all important parameters of this topic.

Study and memorize it as a CIRCUIT DIAGRAM

And use in solving various problems.

- 1) True Length (TL) a' b₁' & a b₁
 - 2) Angle of TL with Hp -
- 3) Angle of TL with Vp –
- 4) Angle of FV with xy − (X
- 5) Angle of TV with $xy \beta$
- Important
 TEN parameters
 to be remembered
 with Notations
 used here onward
- 6) LTV (length of FV) Component (a-1)
- 7) LFV (length of TV) Component (a'-1')
- 8) Position of A- Distances of a & a' from xy
- 9) Position of B- Distances of b & b' from xy
- 10) FV projection ab' and TV projection ab

NOTE this

- θ & α Construct with a
- \emptyset & β Construct with a
- b' & b₁' on same locus.
- b & b₁ on same locus.

Also Remember

True Length is never rotated. It's horizontal component is drawn & it is further rotated to locate view.

Views are always rotated, made horizontal & further extended to locate TL, θ & Ø engineering108.com

GROUP (A)

GENERAL CASES OF THE LINE INCLINED TO BOTH HP & VP (based on 10 parameters).

PROBLEM 1

Line AB is 75 mm long and it is 30° & 40° Inclined to Hp & Vp respectively. End A is 12mm above Hp and 10 mm in front of Vp.

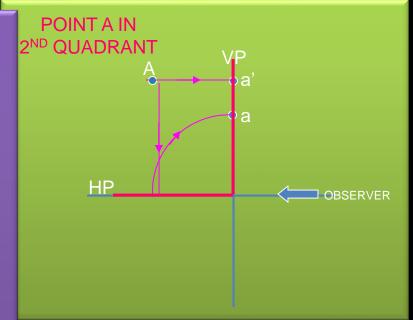
Draw projections. Line is in 1st quadrant.

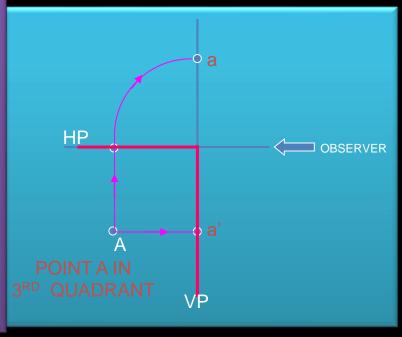
SOLUTION STEPS:

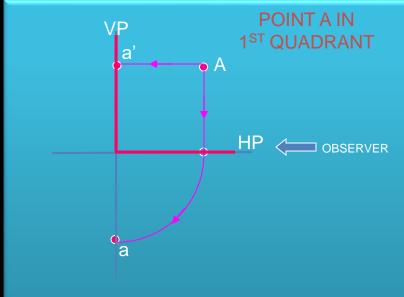
- 1) Draw xy line and one projector.
- 2) Locate a' 12mm above xy line & a 10mm below xy line.
- 3) Take 30° angle from a' & 40° from a and mark TL I.e. 75mm on both lines. Name those points b₁' and b₁ respectively.
- 4) Join both points with a' and a resp.
- 5) Draw horizontal lines (Locus) from both points.
- 6) Draw horizontal component of TL

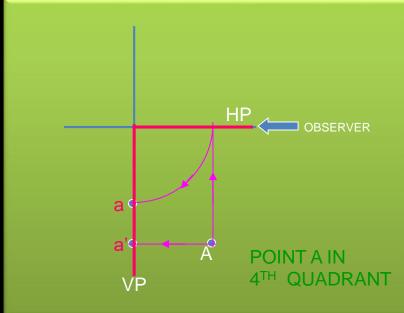
 a b₁ from point b₁ and name it 1.
 (the length a-1 gives length of Fv as we have seen already.)
- 7) Extend it up to locus of a' and rotating a' as center locate b' as shown.

 Join a' b' as Fv.
- 8) From b' drop a projector down ward & get point b. Join a & b l.e. Tv.

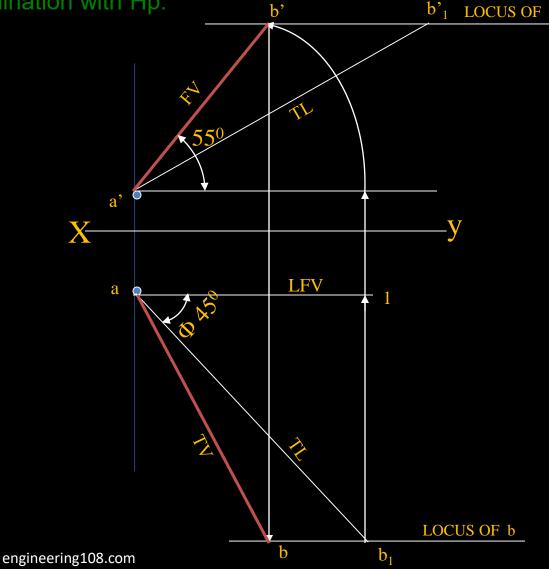



Point A is
Placed In
different
quadrants
and it's Fv & Tv
are brought in
same plane for
Observer to see
clearly.
Fv is visible as
it is a view on


clearly.


Fv is visible as it is a view on VP. But as Tv is is a view on Hp, it is rotated downward 90°, In clockwise direction. The In front part of Hp comes below xy line and the part behind Vp comes above.

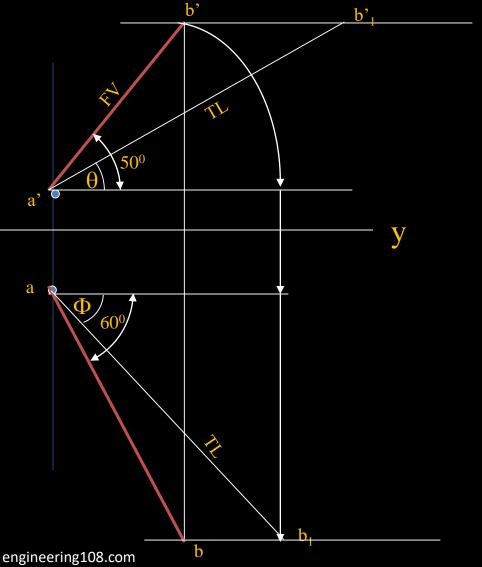
Observe and note the process.



PROBLEM 2:

Line AB 75mm long makes 45° inclination with Vp while it's Fv makes 55°. End A is 10 mm above Hp and 15 mm in front of Vp.If line is in 1st quadrant draw it's projections and find it's inclination with Hp.

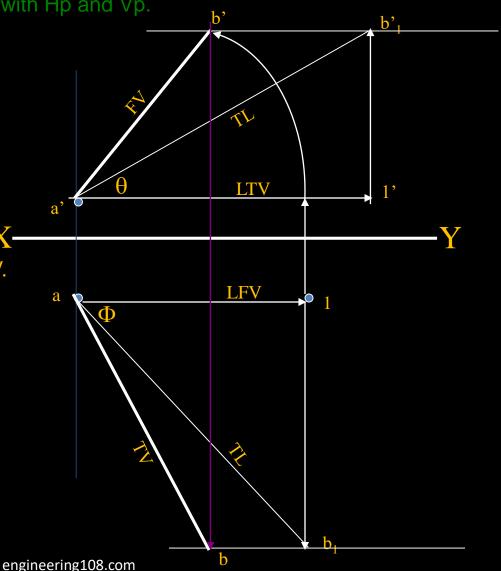
Solution Steps:-


- 1.Draw x-y line.
- 2.Draw one projector for a' & a
- 3.Locate a' 10mm above x-y &
- Tv a 15 mm below xy.
- 4.Draw a line 45° inclined to xy from point a and cut TL 75 mm on it and name that point b_{1} Draw locus from point b_{2}
- 5.Take 55° angle from a' for Fv above xy line.
- 6.Draw a vertical line from b_1 up to locus of a and name it 1. It is horizontal component of TL & is LFV.
- 7.Continue it to locus of a' and rotate upward up to the line of Fv and name it b'.This a' b' line is Fv.
- 8. Drop a projector from b' on locus from point b₁ and name intersecting point b. Line a b is Tv of line AB.
- 9.Draw locus from *b*' and from *a*' with TL distance cut point *b*₁'
- 10. Join a'b₁' as TL and measure it's angle at a'.
- It will be true angle of line with HP.

PROBLEM 3 - Fv of line AB is 50° inclined to xy and measures 55 mm long while it's Tv is 60° inclined to xy line. If end A is 10 mm above Hp and 15 mm in front of Vp, draw it's projections, find TL, inclinations of line with Hp & Vp.

SOLUTION STEPS:

- 1.Draw xy line and one projector.
- 2.Locate a' 10 mm above xy and a 15 mm below xy line.
- 3.Draw locus from these points.
- 4.Draw Fv 50⁰ to xy from a' and mark b' Cutting 55mm on it.
- 5.Similarly draw Tv 60⁰ to xy from a & drawing projector from b' Locate point b and join a b.
- 6.Then rotating views as shown, locate True Lengths ab₁ & a'b₁' and their angles with Hp and Vp.



PROBLEM 4:-

Line AB is 75 mm long .It's Fv and Tv measure 50 mm & 60 mm long respectively. End A is 10 mm above Hp and 15 mm in front of Vp. Draw projections of line AB if end B is in first quadrant. Find angle with Hp and Vp.

SOLUTION STEPS:

- 1.Draw xy line and one projector.
- 2.Locate a' 10 mm above xy and a 15 mm below xy line.
- 3.Draw locus from these points.
- 4.Cut 60mm distance on locus of a' & mark 1' on it as it is LTV.
- 5. Similarly Similarly cut 50mm on locus of a and mark point 1 as it is LFV.
- 6.From 1' draw a vertical line upward and from a' taking TL (75mm) in compass, mark b'₁ point on it. Join a' b'₁ points.
- 7. Draw locus from b'₁
- 8. With same steps below get b₁ point and draw also locus from it.
- 9. Now rotating one of the componentsI.e. a-1 locate b' and join a' with it to get ην. & Φ
- 10. Locate tv similarly and measure Angles

T.V. of a 75 mm long Line CD, measures 50 mm.

End C is in Hp and 50 mm in front of Vp.

End D is 15 mm in front of Vp and it is above Hp.

Draw projections of CD and find angles with Hp and

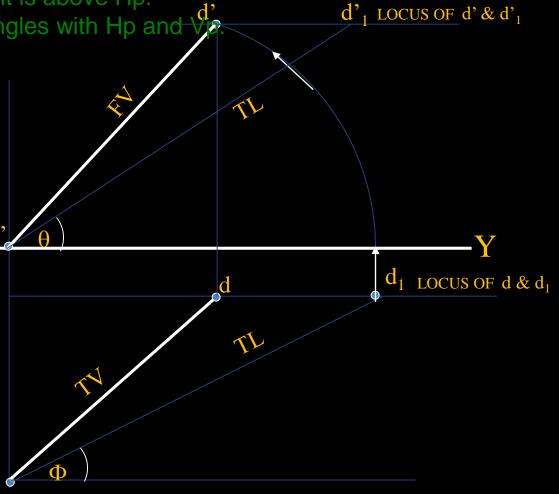
SOLUTION STEPS:

1.Draw xy line and one projector.

2.Locate c' on xy and c 50mm below xy line.

3.Draw locus from these points.

4. Draw locus of d 15 mm below xy c'


5.Cut 50mm & 75 mm distances on locus of d from c and mark points d & d₁ as these are Tv and line CD lengths resp.& join both with c.

6.From d₁ draw a vertical line upward up to xy l.e. up to locus of c' and draw an arc as shown.

7 Then draw one projector from d to meet this arc in d' point & join c' d'

8. Draw locus of d' and cut 75 mm on it from c' as TL

9.Measure Angles

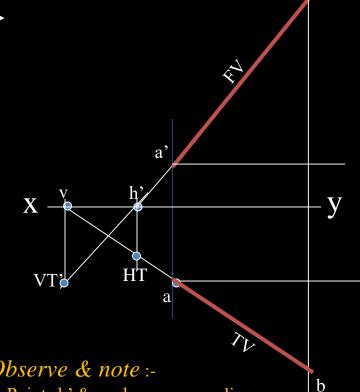
GROUP (B) PROBLEMS INVOLVING TRACES OF THE LINE.

TRACES OF THE LINE:-

THESE ARE THE POINTS OF INTERSECTIONS OF A LINE (OR IT'S EXTENSION) WITH RESPECTIVE REFFERENCE PLANES.

A LINE ITSELF OR IT'S EXTENSION, WHERE EVER TOUCHES H.P., THAT POINT IS CALLED TRACE OF THE LINE ON H.P.(IT IS CALLED H.T.)

SIMILARLY, A LINE ITSELF OR IT'S EXTENSION, WHERE EVER TOUCHES V.P., THAT POINT IS CALLED TRACE OF THE LINE ON V.P.(IT IS CALLED V.T.)


- V. T.:- It is a point on Vp.
 Hence it is called Fv of a point in Vp.
 Hence it's Tv comes on XY line.(Here onward named as V)
- H.T.:- It is a point on Hp.
 Hence it is called Tv of a point in Hp.
 Hence it's Fv comes on XY line.(Here onward named as 'h')

EN PROJECTIONS ARE GIVEN.)

- Begin with FV. Extend FV up to XY line.
- Name this point h' (as it is a Fv of a point in Hp)
- Draw one projector from h'.
- Now extend Tv to meet this projector. This point is HT

STEPS TO LOCATE VT HEN PROJECTIONS ARE GIVEN.)

- Begin with TV. Extend TV up to XY line.
- Name this point V (as it is a Tv of a point in Vp)
- Draw one projector from v.
- Now extend Fv to meet this projector. This point is VT

Observe & note:-

- 1. Points h' & v always on x-y line.
- 2. VT' & v always on one projector.
- 3. HT & h' always on one projector.
- 4. FV h'- VT always co-linear.
- 5. TV v HT always co-linear.

PROBLEM 1:- Fv of line AB makes 45° angle with XY line and measures 60 mm.

Line's Tv makes 30° with XY line. End A is 15 mm above Hp and it's VT is 10 mm below Hp. Draw projections of line AB, determine inclinations with Hp & Vp and locate HT, VT.

b'

h

SOLUTION STEPS:-

Draw xy line, one projector and locate fv a' 15 mm above xy.

Take 45° angle from a' and x marking 60 mm on it locate point to.

Draw locus of VT, 10 mm below xy & extending Fv to this locus locate VT.

as fv-h'-vt' lie on one st.line.

Draw projector from vt, locate v on xy.

From v take 30° angle downward as

Tv and it's inclination can begin with v.

Draw projector from b' and locate b I.e.Tv point.

a

Now rotating views as usual TL and it's inclinations can be found.

Name extension of Fv, touching xy as h' and below it, on extension of Tv, locate HT.

engineering108.com

PROBLEM 2

One end of line AB is 10mm above Hp and other end is 100 mm in-front of Vp. It's Fv is 45° inclined to xy while it's HT & VT are 45mm and 30 mm below xy respectively. Draw projections and find TL with it's inclinations with Hp & VP.

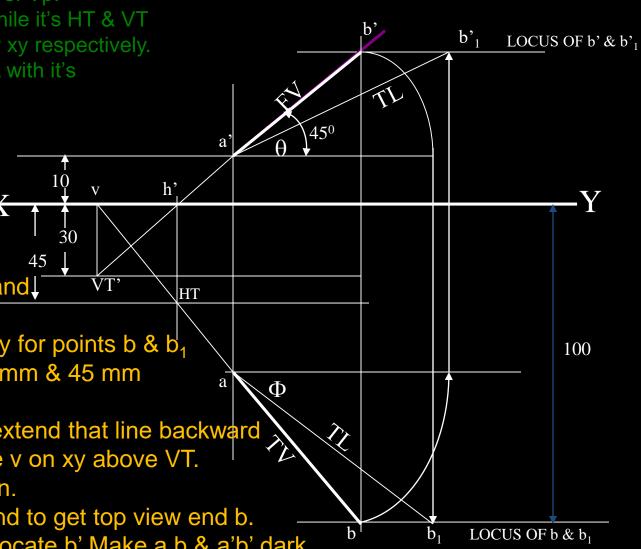
SOLUTION STEPS:-

Draw xy line, one projector and locate a' 10 mm above xy.

Draw locus 100 mm below xy for points b & b₁

Draw loci for VT and HT, 30 mm & 45 mm

below xy respectively.


Take 45° angle from a' and extend that line backward to locate h' and VT, & Locate v on xy above VT.

Locate HT below h' as shown.

Then join v - HT -and extend to get top view end b.

Draw projector upward and locate b' Make a b & a'b' dark.

Now as usual rotating views find TL and it is it is not be a subject to the subje

